These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36555821)
1. Bacterial Cellulose Hybrid Composites with Calcium Phosphate for Bone Tissue Regeneration. Busuioc C; Isopencu G; Banciu A; Banciu DD; Oprea O; Mocanu A; Deleanu I; Zăuleţ M; Popescu L; Tănăsuică R; Vasilescu M; Stoica-Guzun A Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555821 [TBL] [Abstract][Full Text] [Related]
2. Surface-engineered bacterial cellulose as template for crystallization of calcium phosphate. Bodin A; Gustafsson L; Gatenholm P J Biomater Sci Polym Ed; 2006; 17(4):435-47. PubMed ID: 16768294 [TBL] [Abstract][Full Text] [Related]
3. Bone-like apatite formation in biocompatible phosphate-crosslinked bacterial cellulose-based hydrogels for bone tissue engineering applications. Suneetha M; Kim H; Han SS Int J Biol Macromol; 2024 Jan; 256(Pt 2):128364. PubMed ID: 38000603 [TBL] [Abstract][Full Text] [Related]
4. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration. An SJ; Lee SH; Huh JB; Jeong SI; Park JS; Gwon HJ; Kang ES; Jeong CM; Lim YM Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29068426 [TBL] [Abstract][Full Text] [Related]
5. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538 [TBL] [Abstract][Full Text] [Related]
6. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. Wang J; Wan Y; Huang Y IET Nanobiotechnol; 2012 Jun; 6(2):52-7. PubMed ID: 22559707 [TBL] [Abstract][Full Text] [Related]
7. Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Laçin NT Int J Biol Macromol; 2014 Jun; 67():22-7. PubMed ID: 24631550 [TBL] [Abstract][Full Text] [Related]
8. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties. Islam MM; Khan MA; Rahman MM Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994 [TBL] [Abstract][Full Text] [Related]
9. Green approach for fabrication of bacterial cellulose-chitosan composites in the solutions of carbonic acid under high pressure CO Novikov IV; Pigaleva MA; Naumkin AV; Badun GA; Levin EE; Kharitonova EP; Gromovykh TI; Gallyamov MO Carbohydr Polym; 2021 Apr; 258():117614. PubMed ID: 33593532 [TBL] [Abstract][Full Text] [Related]
10. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. Lopes TD; Riegel-Vidotti IC; Grein A; Tischer CA; Faria-Tischer PC Int J Biol Macromol; 2014 Jun; 67():401-8. PubMed ID: 24704166 [TBL] [Abstract][Full Text] [Related]
11. Overview of bacterial cellulose composites: a multipurpose advanced material. Shah N; Ul-Islam M; Khattak WA; Park JK Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844 [TBL] [Abstract][Full Text] [Related]
13. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Stumpf TR; Pértile RA; Rambo CR; Porto LM Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4739-45. PubMed ID: 24094182 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
15. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. Luz EPCG; das Chagas BS; de Almeida NT; de Fátima Borges M; Andrade FK; Muniz CR; Castro-Silva II; Teixeira EH; Popat K; de Freitas Rosa M; Vieira RS Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111175. PubMed ID: 32806235 [TBL] [Abstract][Full Text] [Related]
16. Facile synthesis, characterization, and antimicrobial activity of cellulose-chitosan-hydroxyapatite composite material: a potential material for bone tissue engineering. Mututuvari TM; Harkins AL; Tran CD J Biomed Mater Res A; 2013 Nov; 101(11):3266-77. PubMed ID: 23595871 [TBL] [Abstract][Full Text] [Related]
17. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Grande CJ; Torres FG; Gomez CM; Bañó MC Acta Biomater; 2009 Jun; 5(5):1605-15. PubMed ID: 19246264 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterizations of alginate-α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. Das D; Zhang S; Noh I Biomed Mater; 2018 Jan; 13(2):025008. PubMed ID: 28956533 [TBL] [Abstract][Full Text] [Related]
19. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]
20. Carboxymethyl cellulose/silica hybrids as templates for calcium phosphate biomimetic mineralization. Salama A; Abou-Zeid RE; El-Sakhawy M; El-Gendy A Int J Biol Macromol; 2015 Mar; 74():155-61. PubMed ID: 25526694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]