These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36556019)

  • 1. Automated Region of Interest Selection Improves Deep Learning-Based Segmentation of Hyper-Reflective Foci in Optical Coherence Tomography Images.
    Goel S; Sethi A; Pfau M; Munro M; Chan RVP; Lim JI; Hallak J; Alam M
    J Clin Med; 2022 Dec; 11(24):. PubMed ID: 36556019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks.
    Yu C; Xie S; Niu S; Ji Z; Fan W; Yuan S; Liu Q; Chen Q
    Med Phys; 2019 Oct; 46(10):4502-4519. PubMed ID: 31315159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Automated Hyperreflective Foci Segmentation Based on Image Enhancement and Improved 3D U-Net in SD-OCT Volumes with Diabetic Retinopathy.
    Xie S; Okuwobi IP; Li M; Zhang Y; Yuan S; Chen Q
    Transl Vis Sci Technol; 2020 Apr; 9(2):21. PubMed ID: 32818082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OCT Hyperreflective Retinal Foci in Diabetic Retinopathy: A Semi-Automatic Detection Comparative Study.
    Midena E; Torresin T; Velotta E; Pilotto E; Parrozzani R; Frizziero L
    Front Immunol; 2021; 12():613051. PubMed ID: 33968016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated evaluation of retinal hyperreflective foci changes in diabetic macular edema patients before and after intravitreal injection.
    Wang X; Zhang Y; Ma Y; Kwapong WR; Ying J; Lu J; Ma S; Yan Q; Yi Q; Zhao Y
    Front Med (Lausanne); 2023; 10():1280714. PubMed ID: 37869163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application and progress of artificial intelligence technology in the segmentation of hyperreflective foci in OCT images for ophthalmic disease research.
    Ying JN; Li H; Zhang YY; Li WD; Yi QY
    Int J Ophthalmol; 2024; 17(6):1138-1143. PubMed ID: 38895690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hyperreflective foci in macular edema secondary to multiple etiologies with spectral-domain optical coherence tomography: An observational study.
    Zhu R; Xiao S; Zhang W; Li J; Yang M; Zhang Y; Gu X; Yang L
    BMC Ophthalmol; 2022 Aug; 22(1):352. PubMed ID: 36038824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal Diseases: Characterization and Clinical Implications.
    Fragiotta S; Abdolrahimzadeh S; Dolz-Marco R; Sakurada Y; Gal-Or O; Scuderi G
    J Ophthalmol; 2021; 2021():6096017. PubMed ID: 34956669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperreflective Foci and Specks Are Associated with Delayed Rod-Mediated Dark Adaptation in Nonneovascular Age-Related Macular Degeneration.
    Echols BS; Clark ME; Swain TA; Chen L; Kar D; Zhang Y; Sloan KR; McGwin G; Singireddy R; Mays C; Kilpatrick D; Crosson JN; Owsley C; Curcio CA
    Ophthalmol Retina; 2020 Nov; 4(11):1059-1068. PubMed ID: 32389889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
    Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y
    Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperreflective foci as biomarkers for inflammation in diabetic macular edema: Retrospective analysis of treatment naïve eyes from south India.
    Arthi M; Sindal MD; Rashmita R
    Indian J Ophthalmol; 2021 May; 69(5):1197-1202. PubMed ID: 33913858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new texture-based labeling framework for hyper-reflective foci identification in retinal optical coherence tomography images.
    Monemian M; Daneshmand PG; Rakhshani S; Rabbani H
    Sci Rep; 2024 Oct; 14(1):22933. PubMed ID: 39358477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Deep Learning-Quantified Hyperreflective Foci for the Prediction of Geographic Atrophy Progression.
    Schmidt-Erfurth U; Bogunovic H; Grechenig C; Bui P; Fabianska M; Waldstein S; Reiter GS
    Am J Ophthalmol; 2020 Aug; 216():257-270. PubMed ID: 32277942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyper-reflective dots in optical coherence tomography imaging and inflammation markers in diabetic retinopathy.
    Mat Nor MN; Guo CX; Green CR; Squirrell D; Acosta ML
    J Anat; 2023 Oct; 243(4):697-705. PubMed ID: 37222261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy Logic-Based System for Identifying the Severity of Diabetic Macular Edema from OCT B-Scan Images Using DRIL, HRF, and Cystoids.
    Tripathi A; Kumar P; Tulsani A; Chakrapani PK; Maiya G; Bhandary SV; Mayya V; Pathan S; Achar R; Acharya UR
    Diagnostics (Basel); 2023 Jul; 13(15):. PubMed ID: 37568913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal variation of optical coherence tomography biomarkers as predictors of anti-VEGF treatment outcomes in diabetic macular edema.
    Maggio E; Mete M; Sartore M; Bauci F; Guerriero M; Polito A; Pertile G
    Graefes Arch Clin Exp Ophthalmol; 2022 Mar; 260(3):807-815. PubMed ID: 34661731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint Segmentation of Multi-Class Hyper-Reflective Foci in Retinal Optical Coherence Tomography Images.
    Yao C; Wang M; Zhu W; Huang H; Shi F; Chen Z; Wang L; Wang T; Zhou Y; Peng Y; Zhu L; Chen H; Chen X
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1349-1358. PubMed ID: 34570700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choriocapillaris flow deficit associated with intraretinal hyperreflective foci in intermediate age-related macular degeneration.
    Tiosano L; Byon I; Alagorie AR; Ji YS; Sadda SR
    Graefes Arch Clin Exp Ophthalmol; 2020 Nov; 258(11):2353-2362. PubMed ID: 32666252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.
    Lin M; Bao G; Sang X; Wu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.