These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 3655646)
1. Level of histone H4 mRNA in Xenopus laevis embryonic cells cultured in the absence of cell adhesion. Atsuchi Y; Tashiro K; Yamana K; Shiokawa K J Embryol Exp Morphol; 1986 Nov; 98():175-85. PubMed ID: 3655646 [TBL] [Abstract][Full Text] [Related]
2. Histones in Xenopus laevis' early development: the race against time. Koster JG; Destrée OH; Raat NJ; Westerhoff HV Biomed Biochim Acta; 1990; 49(8-9):855-77. PubMed ID: 2082927 [TBL] [Abstract][Full Text] [Related]
3. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dimitrov S; Almouzni G; Dasso M; Wolffe AP Dev Biol; 1993 Nov; 160(1):214-27. PubMed ID: 8224538 [TBL] [Abstract][Full Text] [Related]
4. Half-Life of Histone H4 mRNA in Xenopus laevis Embryonic Cells at Different Stages: (histone H4 mRNA/Northern blotting/Xenopus embryonic cells/ half-life/actinomycin D). Atsuchi Y; Tashiro K; Fu Y; Shiokawa K Dev Growth Differ; 1987 Jun; 29(3):239-248. PubMed ID: 37281312 [TBL] [Abstract][Full Text] [Related]
5. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis. Nelson KK; Nelson RW BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in early Xenopus embryos induces cell dissociation and inhibits transition from the blastula to gastrula stage. Shibata M; Shinga J; Yasuhiko Y; Kai M; Miura K; Shimogori T; Kashiwagi K; Igarashi K; Shiokawa K Int J Dev Biol; 1998 Jul; 42(5):675-86. PubMed ID: 9712522 [TBL] [Abstract][Full Text] [Related]
7. Involvement of differential gene expression and mRNA stability in the developmental regulation of the hsp 30 gene family in heat-shocked Xenopus laevis embryos. Ohan NW; Heikkila JJ Dev Genet; 1995; 17(2):176-84. PubMed ID: 7586758 [TBL] [Abstract][Full Text] [Related]
8. Developmentally regulated chromatin acetylation and histone H1(0) accumulation. Seigneurin D; Grunwald D; Lawrence JJ; Khochbin S Int J Dev Biol; 1995 Aug; 39(4):597-603. PubMed ID: 8619958 [TBL] [Abstract][Full Text] [Related]
9. [The space-time distribution of the mRNA of the nuclear proteins c-myc and P-53 in the development of the clawed toad studied by hybridization in situ]. Luk'ianov SA; Zaraĭskiĭ AG Ontogenez; 1991; 22(1):47-52. PubMed ID: 1857586 [TBL] [Abstract][Full Text] [Related]
10. Contribution of maternal mRNA for maintenance of Ca2+-dependent reaggregating activity in dissociated cells of Xenopus laevis embryos. Shiokawa K; Tashiro K; Oka T; Yamana K Cell Differ; 1983 Nov; 13(3):247-55. PubMed ID: 6199118 [TBL] [Abstract][Full Text] [Related]
11. Pattern of protein synthesis in dissociated embryonic cells of Xenopus laevis whose reaggregation was inhibited by Ca2+-deprivation and by mechanical interference. Shiokawa K; Saito A; Tashiro K; Nomura K; Koga K; Yamana K Cell Differ; 1985 Aug; 17(2):125-34. PubMed ID: 4042162 [TBL] [Abstract][Full Text] [Related]
12. Effect of histone deacetylase inhibitors on heat shock protein gene expression during Xenopus development. Ovakim DH; Heikkila JJ Genesis; 2003 Jun; 36(2):88-96. PubMed ID: 12820170 [TBL] [Abstract][Full Text] [Related]
13. Changes in the relative abundance of various housekeeping gene transcripts in in vitro-produced early bovine embryos. Bilodeau-Goeseels S; Schultz GA Mol Reprod Dev; 1997 Aug; 47(4):413-20. PubMed ID: 9211425 [TBL] [Abstract][Full Text] [Related]
14. Actin synthesis during the early development of Xenopus laevis. Sturgess EA; Ballantine JE; Woodland HR; Mohun PR; Lane CD; Dimitriadis GJ J Embryol Exp Morphol; 1980 Aug; 58():303-20. PubMed ID: 6893718 [TBL] [Abstract][Full Text] [Related]
15. A conserved element in the protein-coding sequence is required for normal expression of replication-dependent histone genes in developing Xenopus embryos. Ficzycz A; Kaludov NK; Lele Z; Hurt MM; Ovsenek N Dev Biol; 1997 Feb; 182(1):21-32. PubMed ID: 9073440 [TBL] [Abstract][Full Text] [Related]
16. The pregastrula establishment of gene expression pattern in Xenopus embryos: requirements for local cell interactions and for protein synthesis. Sokol SY Dev Biol; 1994 Dec; 166(2):782-8. PubMed ID: 7813795 [TBL] [Abstract][Full Text] [Related]
17. Accumulation of histone H1(0) during early Xenopus laevis development. Grunwald D; Lawrence JJ; Khochbin S Exp Cell Res; 1995 Jun; 218(2):586-95. PubMed ID: 7796895 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of transcription of class II, but not class III and I, genes in Xenopus postblastular embryos overexpressed with the TBP-binding protein, Dr1 (NC2beta). Nagano M; Shiokawa K Biochem Biophys Res Commun; 1999 Nov; 265(3):644-51. PubMed ID: 10600475 [TBL] [Abstract][Full Text] [Related]
19. Refinement of gene expression patterns in the early Xenopus embryo. Wardle FC; Smith JC Development; 2004 Oct; 131(19):4687-96. PubMed ID: 15329341 [TBL] [Abstract][Full Text] [Related]
20. [The expression of TGF beta-related mRNAs in the early development of Xenopus]. Shou WN; Song QB; Chen YD; Qian RL Shi Yan Sheng Wu Xue Bao; 1992 Jun; 25(2):105-12. PubMed ID: 1414122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]