These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36556614)

  • 1. Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material.
    Bazaras Ž; Lukoševičius V
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic Plasticity and Low Cycle Fatigue of an AISI 316L Stainless Steel: Experimental Evaluation of Material Parameters for Durability Design.
    Pelegatti M; Lanzutti A; Salvati E; Srnec Novak J; De Bona F; Benasciutti D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34199076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205.
    Li S; Jiang W; Xie X; Dong Z
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Cycle Fatigue Behavior of Plastically Pre-Strained HSLA S355MC and S460MC Steels.
    Prosgolitis CG; Kermanidis AT; Kamoutsi H; Haidemenopoulos GN
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation and Fatigue Behaviour of A356-T7 Cast Aluminium Alloys Used in High Specific Power IC Engines.
    Natesan E; Eriksson S; Ahlström J; Persson C
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Properties of Aluminum Alloys under Low-Cycle Fatigue Loading.
    Zhao X; Li H; Chen T; Cao B; Li X
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint.
    Kim Y; Hwang W
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the Elastoplastic Strain on Fatigue Durability Determined with the Use of the Spectral Method.
    Böhm M; Kowalski M; Niesłony A
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical modeling approach for thermomechanical low cycle fatigue analysis of cyclically non-stabilized steels.
    Egner W; Sulich P; Mroziński S; Piotrowski M; Egner H
    MethodsX; 2021; 8():101213. PubMed ID: 34434736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles.
    Maksudov F; Kliuchnikov E; Marx KA; Purohit PK; Barsegov V
    Acta Biomater; 2023 Aug; 166():326-345. PubMed ID: 37142109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multiscale Overview of Modelling Rolling Cyclic Fatigue in Bearing Elements.
    Abdullah MU; Khan ZA
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monotonic and Fatigue Behavior of EBM Manufactured Ti-6Al-4V Solid Samples: Experimental, Analytical and Numerical Investigations.
    Radlof W; Benz C; Heyer H; Sander M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology.
    Gong B; Cui S; Zhao Y; Sun Y; Ding Q
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2196-2204. PubMed ID: 28984505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.
    de Krijger J; Rans C; Van Hooreweder B; Lietaert K; Pouran B; Zadpoor AA
    J Mech Behav Biomed Mater; 2017 Jun; 70():7-16. PubMed ID: 27998687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalogue of NIMS fatigue data sheets.
    Furuya Y; Nishikawa H; Hirukawa H; Nagashima N; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):1055-1072. PubMed ID: 31762842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy.
    Mohammed S; Gupta S; Li D; Zeng X; Chen D
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hardening and Softening Behavior of Caliber-Rolled Wire.
    Hwang JK
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals.
    Zhang MH; Shen XH; He L; Zhang KS
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler.
    Müller M; Šleger V; Kolář V; Hromasová M; Piš D; Mishra RK
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.