These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36556668)

  • 1. Effect of Mg Powder's Particle Size on Structure and Mechanical Properties of Ti Foam Synthesized by Space Holder Technique.
    Luo H; Zhao J; Du H; Yin W; Qu Y
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders.
    Singh P; Singh IB; Mondal DP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():918-929. PubMed ID: 30813099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation.
    Qi Y; Contreras KG; Jung HD; Kim HE; Lapovok R; Estrin Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():754-765. PubMed ID: 26652430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured Titanium-10 wt% 45S5 Bioglass-Ag Composite Foams for Medical Applications.
    Jurczyk K; Adamek G; Kubicka MM; Jakubowicz J; Jurczyk M
    Materials (Basel); 2015 Mar; 8(4):1398-1412. PubMed ID: 28788008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration.
    Jiang S; Huang LJ; An Q; Geng L; Wang XJ; Wang S
    J Mech Behav Biomed Mater; 2018 May; 81():10-15. PubMed ID: 29475149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of Ti-Ta-Nb-Mn foams.
    Aguilar C; Guerra C; Lascano S; Guzman D; Rojas PA; Thirumurugan M; Bejar L; Medina A
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():420-31. PubMed ID: 26478329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the Space Holder Shape on the Pore Structure and Mechanical Properties of Porous Cu with a Wide Porosity Range.
    Xiao J; He Y; Ma W; Yue Y; Qiu G
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-memory NiTi foams produced by replication of NaCl space-holders.
    Bansiddhi A; Dunand DC
    Acta Biomater; 2008 Nov; 4(6):1996-2007. PubMed ID: 18678532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel multilayer Ti foam with cortical bone strength and cytocompatibility.
    Kato K; Ochiai S; Yamamoto A; Daigo Y; Honma K; Matano S; Omori K
    Acta Biomater; 2013 Mar; 9(3):5802-9. PubMed ID: 23201016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer.
    Kim SW; Jung HD; Kang MH; Kim HE; Koh YH; Estrin Y
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2808-15. PubMed ID: 23623100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the Influence of the Radial Graded Porosity Distribution on Elastic Modulus of γ/β Phase Ti-Based Alloy Foams for Bone Implant.
    Aguilar C; Alfonso I; González D; Pio E; Neves GO; De Barbieri F; Sancy M; Muñoz L
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of open-pore titanium foam.
    Imwinkelried T
    J Biomed Mater Res A; 2007 Jun; 81(4):964-70. PubMed ID: 17252551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering.
    Sakamoto Y; Asaoka K; Kon M; Matsubara T; Yoshida K
    Biomed Mater Eng; 2006; 16(2):83-91. PubMed ID: 16477117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties.
    Jia J; Siddiq AR; Kennedy AR
    J Mech Behav Biomed Mater; 2015 Aug; 48():229-240. PubMed ID: 25957839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds.
    Torres-Sanchez C; Al Mushref FRA; Norrito M; Yendall K; Liu Y; Conway PP
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():219-228. PubMed ID: 28532024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive Properties and Energy Absorption Behavior of 316L Steel Foam Prepared by Space Holder Technique.
    Hu G; Xu G; Gao Q; Feng Z; Huang P; Zu G
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.