These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36556727)
1. Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study. Slepchenkov MM; Kolosov DA; Nefedov IS; Glukhova OE Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556727 [TBL] [Abstract][Full Text] [Related]
2. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study. Slepchenkov MM; Kolosov DA; Glukhova OE Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744141 [TBL] [Abstract][Full Text] [Related]
3. First-principles study of controllable contact types in Janus MoSH/GaN van der Waals heterostructure. Liu Y; Gao T J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655766 [TBL] [Abstract][Full Text] [Related]
4. Tunable band gaps in graphene/GaN van der Waals heterostructures. Huang L; Yue Q; Kang J; Li Y; Li J J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081 [TBL] [Abstract][Full Text] [Related]
5. First-principles study of the electronic structures and optical properties of g-ZnO/CdX (X = S, Se, Te) van der Waals heterostructures. Ren X; Huang Y; Zhang X; Su J; Sun S J Phys Condens Matter; 2024 Sep; ():. PubMed ID: 39321837 [TBL] [Abstract][Full Text] [Related]
6. A first-principles study of electronic structure and photocatalytic performance of GaN-MX Khan F; Idrees M; Nguyen C; Ahmad I; Amin B RSC Adv; 2020 Jun; 10(41):24683-24690. PubMed ID: 35516170 [TBL] [Abstract][Full Text] [Related]
7. Type-I band alignment of BX-ZnO (X = As, P) van der Waals heterostructures as high-efficiency water splitting photocatalysts: a first-principles study. Do TN; Idrees M; Binh NTT; Phuc HV; Hieu NN; Hoa LT; Amin B; Van H RSC Adv; 2020 Dec; 10(72):44545-44550. PubMed ID: 35517160 [TBL] [Abstract][Full Text] [Related]
8. Structural and electronic properties of a van der Waals heterostructure based on silicene and gallium selenide: effect of strain and electric field. Le PTT; Hieu NN; Bui LM; Phuc HV; Hoi BD; Amin B; Nguyen CV Phys Chem Chem Phys; 2018 Nov; 20(44):27856-27864. PubMed ID: 30398248 [TBL] [Abstract][Full Text] [Related]
10. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Idrees M; Din HU; Rehman SU; Shafiq M; Saeed Y; Bui HD; Nguyen CV; Amin B Phys Chem Chem Phys; 2020 May; 22(18):10351-10359. PubMed ID: 32365147 [TBL] [Abstract][Full Text] [Related]
11. Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme. Sattar A; Moazzam U; Bashir AI; Reza A; Latif H; Usman A; Amjad RJ; Mubshrah A; Nasir A Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33601353 [TBL] [Abstract][Full Text] [Related]
12. Boosting the photocatalytic H Opoku F; Osei-Bonsu Oppong S; Aniagyei A; Akoto O; Adimado AA RSC Adv; 2022 Mar; 12(12):7391-7402. PubMed ID: 35424662 [TBL] [Abstract][Full Text] [Related]
13. Boosting the Curie temperature of GaN monolayer through van der Waals heterostructures. Wu Q; Wang J; Zhi T; Zhuang Y; Tao Z; Shao P; Cai Q; Yang G; Xue J; Chen D; Zhang R Nanotechnology; 2024 May; 35(30):. PubMed ID: 38604152 [TBL] [Abstract][Full Text] [Related]
14. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach. Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945 [TBL] [Abstract][Full Text] [Related]
15. A multi-factor adjustable PtSe Zhang Q; Zhu H; Yang X; Chen L; Shen Y Phys Chem Chem Phys; 2023 Aug; 25(33):22477-22486. PubMed ID: 37581355 [TBL] [Abstract][Full Text] [Related]
16. A first-principles study of two-dimensional NbSe Yeoh KH; Chew KH; Yoon TL; Chang YHR; Ong DS Phys Chem Chem Phys; 2021 Nov; 23(42):24222-24232. PubMed ID: 34668497 [TBL] [Abstract][Full Text] [Related]
17. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. You B; Wang X; Zheng Z; Mi W Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350 [TBL] [Abstract][Full Text] [Related]
18. Electronic structure, optoelectronic properties and enhanced photocatalytic response of GaN-GeC van der Waals heterostructures: a first principles study. Huong PT; Idrees M; Amin B; Hieu NN; Phuc HV; Hoa LT; Nguyen CV RSC Adv; 2020 Jun; 10(40):24127-24133. PubMed ID: 35517332 [TBL] [Abstract][Full Text] [Related]
19. The structure and electronic properties of the MoSe Zhang H; Pei M; Liu B; Wang Z; Zhao X Phys Chem Chem Phys; 2022 Aug; 24(33):19853-19864. PubMed ID: 35960148 [TBL] [Abstract][Full Text] [Related]
20. Vertical strain and electric field tunable band alignment in type-II ZnO/MoSSe van der Waals heterostructures. Wang P; Zong Y; Liu H; Wen H; Liu Y; Wu HB; Xia JB Phys Chem Chem Phys; 2021 Jan; 23(2):1510-1519. PubMed ID: 33400744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]