These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36556729)

  • 1. Study on Microwave Deicing Efficiency of Microwave-Absorbing Concrete Pavements and Its Influencing Factors.
    Liu M; Wang X; Deng Y; Guo Y; Zhao J; Li M
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Study on the Heating and Deicing Performance of Microwave-Absorbing Asphalt Mixtures.
    Deng Y; Wang X; Chen L; Liu M; Gao M; Zhao J
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ultra-Thin, Microwave-Absorbing Wear Layer for Pavement Deicing.
    Liu X; Chang F; Zhao Y
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Thermodynamic Properties of Concrete Surface during Microwave Deicing of Airport Pavement.
    Chen H; Xu J; Wu Y; Liu J; Huang H
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32806707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode Layout Optimization and Numerical Simulation of Cast Conductive Asphalt Concrete Steel Bridge Deck Pavement.
    Li Z; Guo T; Chen Y; Yang W; Ding S; Hao M; Zhao X; Liu J
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of the Application of Microwave Heating Technology in Asphalt Pavement Self-Healing and De-icing.
    Zhang L; Zhang Z; Yu W; Miao Y
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing.
    Galao O; Bañón L; Baeza FJ; Carmona J; Garcés P
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deicing Concrete Pavements and Roads with Carbon Nanotubes (CNTs) as Heating Elements.
    Kim HS; Ban H; Park WJ
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges.
    Tabatabai H; Aljuboori M
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29240710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal Effect of Basic Oxygen Furnace Slag Porous Asphalt Concrete on Copper and Zinc in Road Runoff.
    Yang T; Chen M; Wu S
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Magnetite Concrete on Splitting Tensile Strength and Gamma Ray Shielding Performance Exposed to Repeated Heating at High Temperature.
    Huang X; Chen Z; Tao Q; Xie L; Jin D; Wu D
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties.
    Xie Z; Wang H; Geng Y; Li M; Deng Q; Tian Y; Chen R; Zhu X; Liao Q
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48308-48321. PubMed ID: 34587444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory and Numerical Investigation of Microwave Heating Properties of Asphalt Mixture.
    Wang H; Zhang Y; Zhang Y; Feng S; Lu G; Cao L
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt.
    Jang JK; Kim HG; Kim JH; Ryou JS
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29758008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat Transfer Characteristics of Carbon-Based Photothermal Superhydrophobic Materials with Thermal Insulation Micropores During Anti-icing/Deicing.
    Xie Z; Wang H; Deng Q; Tian Y; Shao Y; Chen R; Zhu X; Liao Q
    J Phys Chem Lett; 2022 Nov; 13(43):10237-10244. PubMed ID: 36300782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Long-Term Performance and Deicing Longevity Prediction of Self-Ice-Melting Asphalt Pavement.
    Zhang H; Guo R
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust photothermal anti-icing/deicing via flexible CMDSP carbon nanotube films.
    Xu J; Gong X; Ramakrishna S
    Nanotechnology; 2022 May; 33(32):. PubMed ID: 34252888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snow Melting Performance of Graphene Composite Conductive Concrete in Severe Cold Environment.
    Wang X; Wu Y; Zhu P; Ning T
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Transparent and Self-Healable Solar Thermal Anti-/Deicing Surfaces: When Ultrathin MXene Multilayers Marry a Solid Slippery Self-Cleaning Coating.
    Niu W; Chen GY; Xu H; Liu X; Sun J
    Adv Mater; 2022 Mar; 34(10):e2108232. PubMed ID: 34963016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Graphene Foam-Polymer Composite with Superior Deicing Efficiency and Strength.
    Bustillos J; Zhang C; Boesl B; Agarwal A
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5022-5029. PubMed ID: 29345899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.