These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 36556733)
21. Enhanced osteogenesis of human mesenchymal stem cells by self-assembled peptide hydrogel functionalized with glutamic acid templated peptides. Onak G; Gökmen O; Yaralı ZB; Karaman O J Tissue Eng Regen Med; 2020 Sep; 14(9):1236-1249. PubMed ID: 32615018 [TBL] [Abstract][Full Text] [Related]
22. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
23. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy. Cheng G; Castelletto V; Moulton CM; Newby GE; Hamley IW Langmuir; 2010 Apr; 26(7):4990-8. PubMed ID: 20073495 [TBL] [Abstract][Full Text] [Related]
24. The rheological and structural properties of Fmoc-peptide-based hydrogels: the effect of aromatic molecular architecture on self-assembly and physical characteristics. Orbach R; Mironi-Harpaz I; Adler-Abramovich L; Mossou E; Mitchell EP; Forsyth VT; Gazit E; Seliktar D Langmuir; 2012 Jan; 28(4):2015-22. PubMed ID: 22220968 [TBL] [Abstract][Full Text] [Related]
25. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides. Horgan CC; Rodriguez AL; Li R; Bruggeman KF; Stupka N; Raynes JK; Day L; White JW; Williams RJ; Nisbet DR Acta Biomater; 2016 Jul; 38():11-22. PubMed ID: 27131571 [TBL] [Abstract][Full Text] [Related]
26. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Chen M; Tan H; Xu W; Wang Z; Zhang J; Li S; Zhou T; Li J; Niu X Acta Biomater; 2022 Nov; 153():159-177. PubMed ID: 36152907 [TBL] [Abstract][Full Text] [Related]
27. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Kwon JS; Kim SW; Kwon DY; Park SH; Son AR; Kim JH; Kim MS Biomaterials; 2014 Jul; 35(20):5337-5346. PubMed ID: 24720878 [TBL] [Abstract][Full Text] [Related]
29. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Ryan DM; Doran TM; Anderson SB; Nilsson BL Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045 [TBL] [Abstract][Full Text] [Related]
30. The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. Liu C; Wu J; Gan D; Li Z; Shen J; Tang P; Luo S; Li P; Lu X; Zheng W J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1814-1825. PubMed ID: 31774242 [TBL] [Abstract][Full Text] [Related]
31. Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition. Koch F; Müller M; König F; Meyer N; Gattlen J; Pieles U; Peters K; Kreikemeyer B; Mathes S; Saxer S R Soc Open Sci; 2018 Mar; 5(3):171562. PubMed ID: 29657766 [TBL] [Abstract][Full Text] [Related]
32. Controlling Neuronal Cell Growth through Composite Laminin Supramolecular Hydrogels. Jain R; Roy S ACS Biomater Sci Eng; 2020 May; 6(5):2832-2846. PubMed ID: 33463249 [TBL] [Abstract][Full Text] [Related]
33. Acidic peptide hydrogel scaffolds enhance calcium phosphate mineral turnover into bone tissue. Amosi N; Zarzhitsky S; Gilsohn E; Salnikov O; Monsonego-Ornan E; Shahar R; Rapaport H Acta Biomater; 2012 Jul; 8(7):2466-75. PubMed ID: 22503952 [TBL] [Abstract][Full Text] [Related]
34. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
35. In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. Vo TN; Ekenseair AK; Spicer PP; Watson BM; Tzouanas SN; Roh TT; Mikos AG J Control Release; 2015 May; 205():25-34. PubMed ID: 25483428 [TBL] [Abstract][Full Text] [Related]
36. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092 [TBL] [Abstract][Full Text] [Related]
37. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
38. Osteoblastic differentiation on hydrogels fabricated from Ca Tsutsumi H; Kawamura M; Mihara H Bioorg Med Chem; 2018 Jul; 26(12):3126-3132. PubMed ID: 29699909 [TBL] [Abstract][Full Text] [Related]
39. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7]. Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281 [TBL] [Abstract][Full Text] [Related]
40. Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Jacob RS; Ghosh D; Singh PK; Basu SK; Jha NN; Das S; Sukul PK; Patil S; Sathaye S; Kumar A; Chowdhury A; Malik S; Sen S; Maji SK Biomaterials; 2015 Jun; 54():97-105. PubMed ID: 25907043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]