These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 36556836)
1. Analysis of Unconfined Compressive Strength of Rammed Earth Mixes Based on Artificial Neural Network and Statistical Analysis. Mustafa YMH; Zami MS; Al-Amoudi OSB; Al-Osta MA; Wudil YS Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556836 [TBL] [Abstract][Full Text] [Related]
2. Estimating the strength of soil stabilized with cement and lime at optimal compaction using ensemble-based multiple machine learning. Onyelowe KC; Moghal AAB; Ebid A; Rehman AU; Hanandeh S; Priyan V Sci Rep; 2024 Jul; 14(1):15308. PubMed ID: 38961241 [TBL] [Abstract][Full Text] [Related]
3. Marble Powder as a Soil Stabilizer: An Experimental Investigation of the Geotechnical Properties and Unconfined Compressive Strength Analysis. Umar IH; Lin H Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473679 [TBL] [Abstract][Full Text] [Related]
4. Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks. Anysz H; Narloch P Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035688 [TBL] [Abstract][Full Text] [Related]
5. Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools. Anysz H; Brzozowski Ł; Kretowicz W; Narloch P Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443513 [TBL] [Abstract][Full Text] [Related]
6. Investigating the Soil Unconfined Compressive Strength Based on Laser-Induced Breakdown Spectroscopy Emission Intensities and Machine Learning Techniques. Wudil YS; Al-Najjar OA; Al-Osta MA; Baghabra Al-Amoudi OS; Gondal MA ACS Omega; 2023 Jul; 8(29):26391-26404. PubMed ID: 37521636 [TBL] [Abstract][Full Text] [Related]
7. Modeling the influence of lime on the unconfined compressive strength of reconstituted graded soil using advanced machine learning approaches for subgrade and liner applications. Guo X; Garcia C; Andrade Valle AI; Onyelowe K; Zarate Villacres AN; Ebid AM; Hanandeh S PLoS One; 2024; 19(4):e0301075. PubMed ID: 38564619 [TBL] [Abstract][Full Text] [Related]
8. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP. Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756 [TBL] [Abstract][Full Text] [Related]
9. The Effect of Soil Mineral Composition on the Compressive Strength of Cement Stabilized Rammed Earth. Narloch P; Woyciechowski P; Kotowski J; Gawriuczenkow I; Wójcik E Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936764 [TBL] [Abstract][Full Text] [Related]
10. Experimental investigations on physico-mechanical properties of kaolinite clay soil stabilized at optimum silica fume content using clamshell ash and lime. Zaini MSI; Hasan M; Almuaythir S; Hyodo M Sci Rep; 2024 May; 14(1):10995. PubMed ID: 38745097 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the Effects of Cement and Lime with Rice Husk Ash as an Additive on Strength Behavior of Coastal Soil. Eliaslankaran Z; Daud NNN; Yusoff ZM; Rostami V Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670914 [TBL] [Abstract][Full Text] [Related]
12. Mechanical and Microstructural Characterization of Rammed Earth Stabilized with Five Biopolymers. Losini AE; Grillet AC; Woloszyn M; Lavrik L; Moletti C; Dotelli G; Caruso M Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591470 [TBL] [Abstract][Full Text] [Related]
13. Studies on the Ageing of Cement Stabilized Rammed Earth Material in Different Exposure Conditions. Rosicki Ł; Narloch P Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161034 [TBL] [Abstract][Full Text] [Related]
14. Geotechnical properties of clayey soil improved by sewage sludge ash. Kadhim YM; Al-Adhamii RAJ; Fattah MY J Air Waste Manag Assoc; 2022 Jan; 72(1):34-47. PubMed ID: 33320778 [TBL] [Abstract][Full Text] [Related]
15. Strength performance of low-bearing-capacity clayey soils stabilized with ladle furnace slag. Espinosa AB; Revilla-Cuesta V; Skaf M; Serrano-López R; Ortega-López V Environ Sci Pollut Res Int; 2023 Sep; 30(45):101317-101342. PubMed ID: 37648914 [TBL] [Abstract][Full Text] [Related]
16. Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil. Mustafa YMH; Al-Amoudi OSB; Ahmad S; Maslehuddin M; Al-Malack MH Environ Sci Pollut Res Int; 2021 Jan; 28(3):3196-3216. PubMed ID: 32910405 [TBL] [Abstract][Full Text] [Related]
17. Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material. Singh SP; Tripathy DP; Ranjith PG Waste Manag; 2008; 28(8):1331-7. PubMed ID: 18060762 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Effect of Binary Fly Ash-Lime Mixture on the Bearing Capacity of Natural Soils: A Comparison with Two Conventional Stabilizers Lime and Portland Cement. Arias-Jaramillo YP; Gómez-Cano D; Carvajal GI; Hidalgo CA; Muñoz F Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297129 [TBL] [Abstract][Full Text] [Related]
19. Estimation of soil erodibility in Peninsular Malaysia: A case study using multiple linear regression and artificial neural networks. Rehman MA; Abd Rahman N; Ibrahim ANH; Kamal NA; Ahmad A Heliyon; 2024 Apr; 10(7):e28854. PubMed ID: 38576554 [TBL] [Abstract][Full Text] [Related]
20. Influence of the ANN Hyperparameters on the Forecast Accuracy of RAC's Compressive Strength. Almeida TADC; Felix EF; de Sousa CMA; Pedroso GOM; Motta MFB; Prado LP Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]