These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36557117)

  • 1. Evaluation of Nanofiltration Membranes for the Purification of Monosaccharides: Influence of pH, Temperature, and Sulfates on the Solute Retention and Fouling.
    Rathnayake B; Valkama H; Ohenoja M; Haverinen J; Keiski RL
    Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of furfural from monosaccharides by nanofiltration.
    Qi B; Luo J; Chen X; Hang X; Wan Y
    Bioresour Technol; 2011 Jul; 102(14):7111-8. PubMed ID: 21570829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.
    Zhou F; Wang C; Wei J
    Bioresour Technol; 2013 Mar; 131():349-56. PubMed ID: 23376199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides.
    Abejón R; Rabadán J; Garea A; Irabien A
    Membranes (Basel); 2020 Feb; 10(2):. PubMed ID: 32075000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-Assisted Optimization of Xylose, Arabinose, Glucose, Mannose, Galactose and Real Hemicellulose Streams Dehydration To (Hydroxymethyl)Furfural and Levulinic Acid.
    Jakob A; Likozar B; Grilc M
    ChemSusChem; 2024 Jul; ():e202400962. PubMed ID: 38959341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration.
    Ajao O; Rahni M; Marinova M; Chadjaa H; Savadogo O
    Membranes (Basel); 2017 Dec; 7(4):. PubMed ID: 29244761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of monosaccharides from dilute acid corncob hydrolysate by nanofiltration: modeling and optimization.
    Jiang K; Kuang H; Qin T; Song M; Zhou J; Yang P; Zhuang W; Ying H; Wu J
    RSC Adv; 2018 Apr; 8(23):12672-12683. PubMed ID: 35541275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration.
    Weng YH; Wei HJ; Tsai TY; Lin TH; Wei TY; Guo GL; Huang CP
    Bioresour Technol; 2010 Jul; 101(13):4889-94. PubMed ID: 20022241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Acid Whey Fouling after Protein Isolation Using Nanofiltration.
    Simonič M; Pintarič ZN
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34208948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic valorization of hardwood for enhanced xylose-hydrolysate recovery and cellulose enzymatic efficiency via synergistic effect of Fe
    Huang K; Das L; Guo J; Xu Y
    Biotechnol Biofuels; 2019; 12():248. PubMed ID: 31636707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid.
    Bustos G; Ramírez JA; Garrote G; Vázquez M
    Appl Biochem Biotechnol; 2003 Jan; 104(1):51-68. PubMed ID: 12495205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Nanofiltration Membranes for Pure Lactic Acid Permeability.
    Cabrera-González M; Ahmed A; Maamo K; Salem M; Jordan C; Harasek M
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.
    Liu L; Chang HM; Jameel H; Park S
    Bioresour Technol; 2018 Mar; 252():165-171. PubMed ID: 29324276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.
    Ehsanipour M; Suko AV; Bura R
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenic Escherichia coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1993; 39-40():301-22. PubMed ID: 8323264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration.
    Sasaki K; Sasaki D; Sakihama Y; Teramura H; Yamada R; Hasunuma T; Ogino C; Kondo A
    Bioresour Technol; 2013 Nov; 147():84-88. PubMed ID: 23994307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts.
    Palmqvist E; Grage H; Meinander NQ; Hahn-Hägerdal B
    Biotechnol Bioeng; 1999 Apr; 63(1):46-55. PubMed ID: 10099580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
    Lu Y; Warner R; Sedlak M; Ho N; Mosier NS
    Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates.
    Baugh KD; McCarty PL
    Biotechnol Bioeng; 1988 Jan; 31(1):50-61. PubMed ID: 18581563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.