BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3655716)

  • 1. The control of Na+/H+ exchange by molecular oxygen in trout erythrocytes. A possible role of hemoglobin as a transducer.
    Motais R; Garcia-Romeu F; Borgese F
    J Gen Physiol; 1987 Aug; 90(2):197-207. PubMed ID: 3655716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catecholamine-induced transport systems in trout erythrocyte. Na+/H+ countertransport or NaCl cotransport?
    Borgese F; Garcia-Romeu F; Motais R
    J Gen Physiol; 1986 Apr; 87(4):551-66. PubMed ID: 3701298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transient sodium-hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Baroin A; Garcia-Romeu F; Lamarre T; Motais R
    J Physiol; 1984 Nov; 356():21-31. PubMed ID: 6520787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormone-induced co-transport with specific pharmacological properties in erythrocytes of rainbow trout, Salmo gairdneri.
    Baroin A; Garcia-Romeu F; Lamarre T; Motais R
    J Physiol; 1984 May; 350():137-57. PubMed ID: 6747848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Borgese F; Garcia-Romeu F; Motais R
    J Physiol; 1987 Jan; 382():123-44. PubMed ID: 3040965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion movements and volume changes induced by catecholamines in erythrocytes of rainbow trout: effect of pH.
    Borgese F; Garcia-Romeu F; Motais R
    J Physiol; 1987 Jan; 382():145-57. PubMed ID: 2442357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of catecholamines on deformability of red cells from trout: relative roles of cyclic AMP and cell volume.
    Chiocchia G; Motais R
    J Physiol; 1989 May; 412():321-32. PubMed ID: 2557428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+-H+ exchange and pH regulation in red blood cells: role of uncatalyzed H2CO3 dehydration.
    Motais R; Fievet B; Garcia-Romeu F; Thomas S
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C728-35. PubMed ID: 2539723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of anions on the Na(+)-H+ exchange of trout red blood cells.
    Guizouarn H; Scheuring U; Borgese F; Motais R; Garcia-Romeu F
    J Physiol; 1990 Sep; 428():79-94. PubMed ID: 2172527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout.
    Tetens V; Christensen NJ
    J Comp Physiol B; 1987; 157(5):667-75. PubMed ID: 2826555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells.
    Motais R; Borgese F; Scheuring U; Garcia-Romeu F
    J Gen Physiol; 1989 Aug; 94(2):385-400. PubMed ID: 2552001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A macromolecular transducer as illustrated by trout hemoglobin IV.
    Brunori M; Coletta M; Giardina B; Wyman J
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4310-2. PubMed ID: 30085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a K(+)-H+ exchange in trout red blood cells.
    Fievet B; Guizouarn H; Pellissier B; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():597-607. PubMed ID: 8392574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume-activated Cl(-)-independent and Cl(-)-dependent K+ pathways in trout red blood cells.
    Guizouarn H; Harvey BJ; Borgese F; Gabillat N; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():609-26. PubMed ID: 8392575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally-related changes in red cell levels of ionic modulators of hemoglobin-O2 affinity in rainbow trout, Salmo gairdneri.
    Houston AH; Tun N
    Comp Biochem Physiol A Comp Physiol; 1986; 85(4):779-83. PubMed ID: 2879683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish.
    Thomas S; Perry SF
    J Exp Zool; 1992 Aug; 263(2):160-75. PubMed ID: 1323642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of haemoglobin O2 saturation on volume regulation in adrenergically stimulated red blood cells from the trout, Oncorhynchus mykiss.
    Nielsen OB
    J Comp Physiol B; 1997 Apr; 167(3):159-68. PubMed ID: 9151427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desensitization by external Na of the cyclic AMP-dependent Na+/H+ antiporter in trout red blood cells.
    Garcia-Romeu F; Motais R; Borgese F
    J Gen Physiol; 1988 Apr; 91(4):529-48. PubMed ID: 2839593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive respiratory responses of trout to acute hypoxia. III. Ion movements and pH changes in the red blood cell.
    Fievet B; Claireaux G; Thomas S; Motais R
    Respir Physiol; 1988 Oct; 74(1):99-113. PubMed ID: 3142002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of blood oxygen transport and red cell pHi after exhaustive activity in rainbow trout (Salmo gairdneri) and starry flounder (Platichthys stellatus).
    Milligan CL; Wood CM
    J Exp Biol; 1987 Nov; 133():263-82. PubMed ID: 3430114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.