These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3655729)

  • 1. Regulation of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) growth in McCoy cells by amino acid antagonism.
    Coles AM; Pearce JH
    J Gen Microbiol; 1987 Mar; 133(3):701-8. PubMed ID: 3655729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential amino acid utilization by Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and its regulatory effect on chlamydial growth.
    Allan I; Pearce JH
    J Gen Microbiol; 1983 Jul; 129(7):1991-2000. PubMed ID: 6415225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin.
    Allan I; Pearce JH
    J Gen Microbiol; 1983 Jul; 129(7):2001-7. PubMed ID: 6631408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms.
    Allan I; Hatch TP; Pearce JH
    J Gen Microbiol; 1985 Dec; 131(12):3171-7. PubMed ID: 3831232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism.
    Prain CJ; Pearce JH
    J Gen Microbiol; 1989 Jul; 135(7):2107-23. PubMed ID: 2614396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive inhibition of amino acid uptake suppresses chlamydial growth: involvement of the chlamydial amino acid transporter BrnQ.
    Braun PR; Al-Younes H; Gussmann J; Klein J; Schneider E; Meyer TF
    J Bacteriol; 2008 Mar; 190(5):1822-30. PubMed ID: 18024516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cortisone, cytochalasin B and cycloheximide on strains of Chlamydia psittaci in cell cultures.
    Tessler J
    Can J Comp Med; 1983 Jul; 47(3):352-7. PubMed ID: 6357413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body.
    Rockey DD; Rosquist JL
    Infect Immun; 1994 Jan; 62(1):106-12. PubMed ID: 8262615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis?
    Coles AM; Reynolds DJ; Harper A; Devitt A; Pearce JH
    FEMS Microbiol Lett; 1993 Jan; 106(2):193-200. PubMed ID: 8454184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between Chlamydia psittaci and L cells for host isoleucine pools: a limiting factor in chlamydial multiplication.
    Hatch TP
    Infect Immun; 1975 Jul; 12(1):211-20. PubMed ID: 1095493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monoclonal antibodies to Chlamydia psittaci guinea pig inclusion conjunctivitis (GPIC) strain.
    Cherian PV; Magee WE
    Vet Microbiol; 1990 Mar; 22(1):43-51. PubMed ID: 2186565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein and amino acid requirements of fishes.
    Wilson RP
    Annu Rev Nutr; 1986; 6():225-44. PubMed ID: 3089240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotyping of Chlamydia psittaci based on inclusion morphology and response to diethylaminoethyl-dextran and cycloheximide.
    Spears P; Storz J
    Infect Immun; 1979 Apr; 24(1):224-32. PubMed ID: 457272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis.
    Hsia R; Ohayon H; Gounon P; Dautry-Varsat A; Bavoil PM
    Microbes Infect; 2000 Jun; 2(7):761-72. PubMed ID: 10955956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells.
    Byrne GI; Lehmann LK; Landry GJ
    Infect Immun; 1986 Aug; 53(2):347-51. PubMed ID: 3089936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of several strains of Chlamydia psittaci in Vero and McCoy cells in the presence of cytochalasin and cortisone.
    Tessler J
    Can J Comp Med; 1984 Jul; 48(3):290-3. PubMed ID: 6478298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron microscopic observations concerning the in vivo uptake and release of the agent of guinea-pig inclusion conjunctivitis (Chlamydia psittaci) in guinea-pig exocervix.
    Soloff BL; Rank RG; Barron AL
    J Comp Pathol; 1985 Jul; 95(3):335-44. PubMed ID: 4031129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infectivity titration of guinea-pig inclusion conjunctivitis agent in irradiated McCoy cells.
    Griffiths MS; Ainsworth S; Pearce JH
    J Gen Microbiol; 1976 Aug; 96(2):249-56. PubMed ID: 986419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy.
    Rockey DD; Fischer ER; Hackstadt T
    Infect Immun; 1996 Oct; 64(10):4269-78. PubMed ID: 8926099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan recycling is responsible for the interferon-gamma resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells.
    Wood H; Roshick C; McClarty G
    Mol Microbiol; 2004 May; 52(3):903-16. PubMed ID: 15101993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.