BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36557355)

  • 1. Rubik's Cube as Reconfigurable Microfluidic Platform for Rapid Setup and Switching of Analytical Devices.
    Lai X; Sun Y; Yang M; Wu H
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rubik's microfluidic cube.
    Lai X; Shi Z; Pu Z; Zhang P; Zhang X; Yu H; Li D
    Microsyst Nanoeng; 2020; 6():27. PubMed ID: 34567642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays.
    Fu H; Yang J; Guo L; Nie J; Yin Q; Zhang L; Zhang Y
    Biosens Bioelectron; 2017 Oct; 96():194-200. PubMed ID: 28499195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubik's cube PBA frameworks for optimizing the electrochemical performance in alkali metal-ion batteries.
    Shi Y; Yang B; Song G; Li Y; Li W; Guo X; Shakouri M; Pang H
    J Colloid Interface Sci; 2024 Jun; 673():807-816. PubMed ID: 38906002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color image encryption scheme based on alternate quantum walk and controlled Rubik's Cube.
    Zhao J; Zhang T; Jiang J; Fang T; Ma H
    Sci Rep; 2022 Aug; 12(1):14253. PubMed ID: 35995941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.
    Zhu J; Li Y; Hu Y; Ma K; Zhou SK; Zheng Y
    Med Image Anal; 2020 Aug; 64():101746. PubMed ID: 32544840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Microfluidics: Current Status and Future Prospects.
    Lai X; Yang M; Wu H; Li D
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics.
    Lai X; Lu B; Zhang P; Zhang X; Pu Z; Yu H; Li D
    ACS Biomater Sci Eng; 2019 Dec; 5(12):6801-6810. PubMed ID: 33423473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning and Transfer in Problem Solving Progressions.
    Daniels JS; Moreau D; Macnamara BN
    J Intell; 2022 Oct; 10(4):. PubMed ID: 36278607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects.
    Yuen PK
    Lab Chip; 2016 Sep; 16(19):3700-3707. PubMed ID: 27722698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
    Lee Y; Kim B; Oh I; Choi S
    Small; 2018 Dec; 14(52):e1802769. PubMed ID: 30375722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Modular µSiM Reconfigured: Integration of Microfluidic Capabilities to Study In Vitro Barrier Tissue Models under Flow.
    Mansouri M; Ahmed A; Ahmad SD; McCloskey MC; Joshi IM; Gaborski TR; Waugh RE; McGrath JL; Day SW; Abhyankar VV
    Adv Healthc Mater; 2022 Nov; 11(21):e2200802. PubMed ID: 35953453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D free-assembly modular microfluidics inspired by movable type printing.
    Huang S; Wu J; Zheng L; Long Y; Chen J; Li J; Dai B; Lin F; Zhuang S; Zhang D
    Microsyst Nanoeng; 2023; 9():111. PubMed ID: 37705925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BiowareCFP: An Application-Agnostic Modular Reconfigurable Cyber-Fluidic Platform.
    Tanev G; Svendsen WE; Madsen J
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Disordered Rubik's Cube-Inspired Framework for Sodium-Ion Batteries with Ultralong Cycle Lifespan.
    Peng J; Zhang B; Hua W; Liang Y; Zhang W; Du Y; Peleckis G; Indris S; Gu Q; Cheng Z; Wang J; Liu H; Dou S; Chou S
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202215865. PubMed ID: 36470847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired reconfiguration of 3D printed microfluidic hydrogels via automated manipulation of magnetic inks.
    Mansoorifar A; Tahayeri A; Bertassoni LE
    Lab Chip; 2020 May; 20(10):1713-1719. PubMed ID: 32363355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubik's cube: an energy perspective.
    Chen YR; Lee CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012815. PubMed ID: 24580289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Functioning Macroscopic "Rubik's Cube" Assembled via Controllable Dynamic Covalent Interactions.
    Ji X; Li Z; Liu X; Peng HQ; Song F; Qi J; Lam JWY; Long L; Sessler JL; Tang BZ
    Adv Mater; 2019 Oct; 31(40):e1902365. PubMed ID: 31389102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable Acrylic-tape Hybrid Microfluidics.
    Ren Y; Ray S; Liu Y
    Sci Rep; 2019 Mar; 9(1):4824. PubMed ID: 30886239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.