These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36557402)

  • 1. The Limit Tuning Effects Exerted by the Mechanically Induced Artificial Potential Barriers on the
    Yang Y; Chen J; Wang Y
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prestress-loading effect on the current-voltage characteristics of a piezoelectric p-n junction together with the corresponding mechanical tuning laws.
    Yang W; Fan S; Liang Y; Hu Y
    Beilstein J Nanotechnol; 2019; 10():1833-1843. PubMed ID: 31579080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Asymmetry Mechanical Loads on the Potential Barrier Region of a Piezoelectric pn Junction.
    Fan S; Chen Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1783-1790. PubMed ID: 33201810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of piezoelectric positive-negative junction on the multi-field coupled waves propagation in the piezoelectric semiconductor.
    Wei Z; Wei P; Xu C; Guo X
    J Acoust Soc Am; 2022 Sep; 152(3):1883. PubMed ID: 36182297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezotronic Tuning of Potential Barriers in ZnO Bicrystals.
    Keil P; Trapp M; Novak N; Frömling T; Kleebe HJ; Rödel J
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29349853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezotronic Tunneling Junction Gated by Mechanical Stimuli.
    Liu S; Wang L; Feng X; Liu J; Qin Y; Wang ZL
    Adv Mater; 2019 Dec; 31(51):e1905436. PubMed ID: 31643113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of PN junction inhomogeneity on the piezoelectric fields of acoustic waves in piezo-semiconductive fibers.
    Fang K; Li P; Li N; Liu D; Qian Z; Kolesov V; Kuznetsova I
    Ultrasonics; 2022 Mar; 120():106660. PubMed ID: 34954477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode.
    Shi J; Starr MB; Xiang H; Hara Y; Anderson MA; Seo JH; Ma Z; Wang X
    Nano Lett; 2011 Dec; 11(12):5587-93. PubMed ID: 22088237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct-Current Generator Based on Dynamic PN Junctions with the Designed Voltage Output.
    Lu Y; Hao Z; Feng S; Shen R; Yan Y; Lin S
    iScience; 2019 Dec; 22():58-69. PubMed ID: 31751825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between Electromechanical Fields and Carriers in a Multilayered Piezoelectric Semiconductor Beam.
    Hong R; Yang W; Wang Y
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional studies on wurtzite piezotronic transistors: influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier.
    Liu W; Zhang A; Zhang Y; Wang ZL
    Nanotechnology; 2016 May; 27(20):205204. PubMed ID: 27053577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carrier concentration-dependent interface engineering for high-performance zinc oxide piezoelectric device.
    Zhang H; Tian G; Xiong D; Yang T; Wang S; Sun Y; Jin L; Lan B; Deng L; Yang W; Deng W
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):534-540. PubMed ID: 36088698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Enhancement Mechanism of ZnO Nanorod-based Piezoelectric Devices through Surface Engineering.
    Zhang H; Tian G; Xiong D; Yang T; Zhong S; Jin L; Lan B; Deng L; Wang S; Sun Y; Yang W; Deng W
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29061-29069. PubMed ID: 35726823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pristine PN junction toward atomic layer devices.
    Xia H; Luo M; Wang W; Wang H; Li T; Wang Z; Xu H; Chen Y; Zhou Y; Wang F; Xie R; Wang P; Hu W; Lu W
    Light Sci Appl; 2022 Jun; 11(1):170. PubMed ID: 35661682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically Induced Carrier Distribution in a Composite Rod of Piezoelectric Semiconductors and Piezomagnetics.
    Wang G; Liu J; Feng W; Yang J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier density and Schottky barrier on the performance of DC nanogenerator.
    Liu J; Fei P; Song J; Wang X; Lao C; Tummala R; Wang ZL
    Nano Lett; 2008 Jan; 8(1):328-32. PubMed ID: 18085814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of charge redistribution at the metal-semiconductor and semiconductor-semiconductor interfaces of metal-bilayer MoS
    Wang Q; Shao Y; Shi X
    J Chem Phys; 2020 Jun; 152(24):244701. PubMed ID: 32610946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect.
    Lozano H; Catalán G; Esteve J; Domingo N; Murillo G
    Nanotechnology; 2021 Jan; 32(2):025202. PubMed ID: 32942269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning.
    Song HC; Kim SW; Kim HS; Lee DG; Kang CY; Nahm S
    Adv Mater; 2020 Dec; 32(51):e2002208. PubMed ID: 33006178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Charge Carrier Dynamics in ZnO Microarchitecture-Based UV/Visible Photodetector via Photonic-Strain Induced Effects.
    Purusothaman Y; Alluri NR; Chandrasekhar A; Vivekananthan V; Kim SJ
    Small; 2018 Mar; 14(11):e1703044. PubMed ID: 29377477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.