These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36557465)

  • 1. Thermal and Flow Analysis of Fully Developed Electroosmotic Flow in Parallel-Plate Micro- and Nanochannels with Surface Charge-Dependent Slip.
    Chang L; Sun Y; Buren M; Jian Y
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow.
    Rezaei M; Azimian AR; Pishevar AR
    Phys Chem Chem Phys; 2018 Dec; 20(48):30365-30375. PubMed ID: 30489580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroviscous effect on fluid drag in a microchannel with large zeta potential.
    Jing D; Bhushan B
    Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Fully Developed Electroosmotic Flow of Power-Law Nanofluid in a Rectangular Microchannel.
    Deng S
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31151264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels.
    Park HM; Kim TW
    Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube.
    Buren M; Jian Y; Zhao Y; Chang L; Liu Q
    Beilstein J Nanotechnol; 2019; 10():1628-1635. PubMed ID: 31467824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroosmotic modulated unsteady squeezing flow with temperature-dependent thermal conductivity, electric and magnetic field effects.
    Prakash J; Tripathi D; Bég OA; Sharma RK
    J Phys Condens Matter; 2022 Feb; 34(17):. PubMed ID: 35078162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive solute separation in AC electroosmosis including surface charge-coupled hydrodynamic slip effects.
    Huang HF; Kuo JE; Huang KH
    Electrophoresis; 2022 Feb; 43(4):571-580. PubMed ID: 34897730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic and thermal slip effect on double-diffusive free convective boundary layer flow of a nanofluid past a flat vertical plate in the moving free stream.
    Khan WA; Uddin MJ; Ismail AI
    PLoS One; 2013; 8(3):e54024. PubMed ID: 23533566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full Solutions to Flow and Heat Transfer from Slip-Induced Microtube Shapes.
    Turkyilmazoglu M; Duraihem FZ
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoresis of particles with Navier velocity slip.
    Park HM
    Electrophoresis; 2013 Mar; 34(5):651-61. PubMed ID: 23229901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions.
    Ramzan M; Dawar A; Saeed A; Kumam P; Watthayu W; Kumam W
    PLoS One; 2021; 16(12):e0260854. PubMed ID: 34905556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy.
    Abbas SZ; Khan MI; Kadry S; Khan WA; Israr-Ur-Rehman M; Waqas M
    Comput Methods Programs Biomed; 2020 Jul; 190():105362. PubMed ID: 32032806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2016 Aug; 476():167-176. PubMed ID: 27214147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel.
    Wang X; Qiao Y; Qi H; Xu H
    Electrophoresis; 2021 Nov; 42(21-22):2347-2355. PubMed ID: 33811361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.