These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 36557473)
1. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves. Hsu JC; Chang CY Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473 [TBL] [Abstract][Full Text] [Related]
2. Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets. Wang Y; Li X; Meng H; Tao R; Qian J; Fu C; Luo J; Xie J; Fu Y ACS Appl Mater Interfaces; 2024 Aug; 16(34):45119-45130. PubMed ID: 39143893 [TBL] [Abstract][Full Text] [Related]
3. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics. Namnabat MS; Moghimi Zand M; Houshfar E Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758 [TBL] [Abstract][Full Text] [Related]
4. Numerical study of acoustophoretic manipulation of particles in microfluidic channels. Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594 [TBL] [Abstract][Full Text] [Related]
5. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199 [TBL] [Abstract][Full Text] [Related]
6. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Muller PB; Barnkob R; Jensen MJ; Bruus H Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952 [TBL] [Abstract][Full Text] [Related]
7. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271 [TBL] [Abstract][Full Text] [Related]
8. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner. Khan MS; Sahin MA; Destgeer G; Park J Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893 [TBL] [Abstract][Full Text] [Related]
9. Outer Acoustic Streaming Flow Driven by Asymmetric Acoustic Resonances. Lei J; Zheng G; Yao Z; Huang Z Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056230 [TBL] [Abstract][Full Text] [Related]
10. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces. Lei J Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357 [TBL] [Abstract][Full Text] [Related]
11. Capillary-based, multifunctional manipulation of particles and fluids Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708 [TBL] [Abstract][Full Text] [Related]
12. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Muller PB; Rossi M; Marín AG; Barnkob R; Augustsson P; Laurell T; Kähler CJ; Bruus H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023006. PubMed ID: 24032923 [TBL] [Abstract][Full Text] [Related]
13. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Liu X; Zheng T; Wang C Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304 [TBL] [Abstract][Full Text] [Related]
15. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
16. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices. Hsu JC; Hsu CH; Huang YW Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118 [TBL] [Abstract][Full Text] [Related]
17. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Devendran C; Albrecht T; Brenker J; Alan T; Neild A Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363 [TBL] [Abstract][Full Text] [Related]
19. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]