These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36557507)

  • 1. Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing.
    Koo S
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green Synthesis of Nanoparticles Using Bio-Inspired Systems and Electrically Conductive Pattern Fabrication through Laser-Direct Writing.
    Koo S
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.
    Zhou W; Bai S; Ma Y; Ma D; Hou T; Shi X; Hu A
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24887-92. PubMed ID: 27560607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
    Liu YK; Lee MT
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14576-82. PubMed ID: 25076124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink.
    Hong S; Yeo J; Kim G; Kim D; Lee H; Kwon J; Lee H; Lee P; Ko SH
    ACS Nano; 2013 Jun; 7(6):5024-31. PubMed ID: 23731244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.
    Yeo J; Hong S; Lee D; Hotz N; Lee MT; Grigoropoulos CP; Ko SH
    PLoS One; 2012; 7(8):e42315. PubMed ID: 22900011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.
    Lee D; Paeng D; Park HK; Grigoropoulos CP
    ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-Wave Laser-Induced Transfer of Metal Nanoparticles to Arbitrary Polymer Substrates.
    Lim J; Kim Y; Shin J; Lee Y; Shin W; Qu W; Hwang E; Park S; Hong S
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32272614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review.
    Hwang E; Hong J; Yoon J; Hong S
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles.
    Mizoshiri M; Yoshidomi K; Darkhanbaatar N; Khairullina EM; Tumkin II
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink.
    Kang B; Ko S; Kim J; Yang M
    Opt Express; 2011 Jan; 19(3):2573-9. PubMed ID: 21369077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate.
    Shin W; Lim J; Lee Y; Park S; Kim H; Cho H; Shin J; Yoon Y; Lee H; Kim HJ; Han S; Ko SH; Hong S
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat Scanning for the Fabrication of Conductive Fibers.
    Jang J; Zhou H; Lee J; Kim H; In JB
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33926139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics.
    Liu S; Yuen MC; White EL; Boley JW; Deng B; Cheng GJ; Kramer-Bottiglio R
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28232-28241. PubMed ID: 30045618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Writing on Paper Substrate to Prepare Silver Electrode Structures for Flexible Sensors.
    Wang Q; Li M; Xie Y; Ou Y; Zhou W
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6048-6053. PubMed ID: 34229803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas Injection.
    Mizoshiri M; Yoshidomi K
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow.
    Park S; Kwon J; Lim J; Shin W; Lee Y; Lee H; Kim HJ; Han S; Yeo J; Ko SH; Hong S
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30135357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.