These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36557546)

  • 1. Mechanical Control of the Optical Bandgap in One-Dimensional Photonic Crystals.
    Stinson VP; Shuchi N; McLamb M; Boreman GD; Hofmann T
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of optical properties of circular spiral photonic crystals.
    Grossman N; Ovsianikov A; Petrov A; Eich M; Chichkov B
    Opt Express; 2007 Oct; 15(20):13236-43. PubMed ID: 19550592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of photons at the surface of three-dimensional photonic crystals.
    Ishizaki K; Noda S
    Nature; 2009 Jul; 460(7253):367-70. PubMed ID: 19606144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diamond photonic crystal mirror with a partial bandgap by two 2D photonic crystal layers.
    Jeon SW; Kwon K; Han SW; Kim YS; Cho YW; Lim HT; Moon S; Shin H; Jung H
    Opt Express; 2020 Dec; 28(26):39048-39057. PubMed ID: 33379462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths.
    Noda S; Tomoda K; Yamamoto N; Chutinan A
    Science; 2000 Jul; 289(5479):604-6. PubMed ID: 10915619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetically Tunable One-Dimensional Plasmonic Photonic Crystals.
    Wu C; Fan Q; Wu W; Liang T; Liu Y; Yu H; Yin Y
    Nano Lett; 2023 Mar; 23(5):1981-1988. PubMed ID: 36847818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip natural assembly of silicon photonic bandgap crystals.
    Vlasov YA; Bo XZ; Sturm JC; Norris DJ
    Nature; 2001 Nov; 414(6861):289-93. PubMed ID: 11713524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices.
    Weirich J; Laegsgaard J; Wei L; Alkeskjold TT; Wu TX; Wu ST; Bjarklev A
    Opt Express; 2010 Mar; 18(5):4074-87. PubMed ID: 20389422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of thin-film photonic crystals with complete photonic bandgap.
    Park SY; Kim H; Song BS
    Opt Express; 2018 Oct; 26(22):29521-29526. PubMed ID: 30470114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanowire-based tunable photonic crystals.
    Rehammar R; Kinaret JM
    Opt Express; 2008 Dec; 16(26):21682-91. PubMed ID: 19104600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties.
    Serbin J; Ovsianikov A; Chichkov B
    Opt Express; 2004 Oct; 12(21):5221-8. PubMed ID: 19484080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.
    Ryu SH; Gim MJ; Lee W; Choi SW; Yoon DK
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3186-3191. PubMed ID: 28029761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates.
    Chanda D; Abolghasemi L; Herman PR
    Opt Express; 2006 Sep; 14(19):8568-77. PubMed ID: 19529236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz anisotropic response of additively manufactured one-dimensional photonic crystals.
    Park S; Stinson VP; Boreman GD; Hofmann T
    Opt Lett; 2021 Jul; 46(14):3396-3399. PubMed ID: 34264222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust polymer colloidal crystal photonic bandgap structures.
    Foulger SH; Kotha S; Sweryda-Krawiec B; Baughman TW; Ballato JM; Jiang P; Smith DW
    Opt Lett; 2000 Sep; 25(17):1300-2. PubMed ID: 18066199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional control of light in a two-dimensional photonic crystal slab.
    Chow E; Lin SY; Johnson SG; Villeneuve PR; Joannopoulos JD; Wendt JR; Vawter GA; Zubrzycki W; Hou H; Alleman A
    Nature; 2000 Oct; 407(6807):983-6. PubMed ID: 11069173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
    Cao W; Muñoz A; Palffy-Muhoray P; Taheri B
    Nat Mater; 2002 Oct; 1(2):111-3. PubMed ID: 12618825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.