These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36557546)

  • 21. Demonstration of two-dimensional photonic crystals based on silicon carbide.
    Song BS; Yamada S; Asano T; Noda S
    Opt Express; 2011 Jun; 19(12):11084-9. PubMed ID: 21716336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.
    Sinibaldi A; Descrovi E; Giorgis F; Dominici L; Ballarini M; Mandracci P; Danz N; Michelotti F
    Biomed Opt Express; 2012 Oct; 3(10):2405-10. PubMed ID: 23082282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural stability and optical properties of 1D photonic crystals based on porous anodic alumina after annealing at different temperatures.
    Szwachta G; Białek E; Włodarski M; Norek M
    Nanotechnology; 2022 Aug; 33(45):. PubMed ID: 35878593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diamond-structured photonic crystals.
    Maldovan M; Thomas EL
    Nat Mater; 2004 Sep; 3(9):593-600. PubMed ID: 15343291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Square spiral 3D photonic bandgap crystals at telecommunications frequencies.
    Jensen M; Brett M
    Opt Express; 2005 May; 13(9):3348-54. PubMed ID: 19495237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.
    Li J; Jia B; Zhou G; Gu M
    Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable narrow-bandpass filter based on an asymmetric photonic bandgap structure with a dual-mode liquid crystal.
    Wang HT; Timofeev IV; Chang K; Zyryanov VY; Lee W
    Opt Express; 2014 Jun; 22(12):15097-103. PubMed ID: 24977602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of DNA Origami Diamond Photonic Crystals.
    Park SH; Park H; Hur K; Lee S
    ACS Appl Bio Mater; 2020 Jan; 3(1):747-756. PubMed ID: 35019418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amorphous photonic crystals with only short-range order.
    Shi L; Zhang Y; Dong B; Zhan T; Liu X; Zi J
    Adv Mater; 2013 Oct; 25(37):5314-20. PubMed ID: 24089349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method.
    Jia B; Kang H; Li J; Gu M
    Opt Lett; 2009 Jul; 34(13):1918-20. PubMed ID: 19571951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microassembly of semiconductor three-dimensional photonic crystals.
    Aoki K; Miyazaki HT; Hirayama H; Inoshita K; Baba T; Sakoda K; Shinya N; Aoyagi Y
    Nat Mater; 2003 Feb; 2(2):117-21. PubMed ID: 12612697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element.
    Lowell D; George D; Lutkenhaus J; Tian C; Adewole M; Philipose U; Zhang H; Lin Y
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photonic crystal for graphene plasmons.
    Xiong L; Forsythe C; Jung M; McLeod AS; Sunku SS; Shao YM; Ni GX; Sternbach AJ; Liu S; Edgar JH; Mele EJ; Fogler MM; Shvets G; Dean CR; Basov DN
    Nat Commun; 2019 Oct; 10(1):4780. PubMed ID: 31636265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures.
    Chen L; Taverne MP; Zheng X; Lin JD; Oulton R; Lopez-Garcia M; Ho YL; Rarity JG
    Opt Express; 2015 Oct; 23(20):26565-75. PubMed ID: 26480169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafast all-optical switching in one-dimensional photonic crystal with two defects.
    Ma G; Shen J; Zhang Z; Hua Z; Tang SH
    Opt Express; 2006 Jan; 14(2):858-65. PubMed ID: 19503405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformation-induced bandgap tuning of 2D silicon-based photonic crystals.
    Jun S; Cho YS
    Opt Express; 2003 Oct; 11(21):2769-74. PubMed ID: 19471392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-stage design method for realization of photonic bandgap structures with desired symmetries by interference lithography.
    Ao X; He S
    Opt Express; 2004 Mar; 12(6):978-83. PubMed ID: 19474912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab.
    Safavi-Naeini AH; Painter O
    Opt Express; 2010 Jul; 18(14):14926-43. PubMed ID: 20639979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of photonic crystals in ZnS-doped glass.
    Takeshima N; Narita Y; Nagata T; Tanaka S; Hirao K
    Opt Lett; 2005 Mar; 30(5):537-9. PubMed ID: 15789728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.