BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36557669)

  • 1. Critical Assessment of Short-Read Assemblers for the Metagenomic Identification of Foodborne and Waterborne Pathogens Using Simulated Bacterial Communities.
    Chen Z; Meng J
    Microorganisms; 2022 Dec; 10(12):. PubMed ID: 36557669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing.
    Chen Z; Grim CJ; Ramachandran P; Meng J
    Microbiol Spectr; 2024 Jun; 12(6):e0011724. PubMed ID: 38687063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illumina short read-based shotgun metagenomic data sets of simulated bacterial communities derived from fresh spinach and surface water.
    Chen Z; Meng J
    Microbiol Resour Announc; 2024 Jun; ():e0037524. PubMed ID: 38860804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences.
    Wang Z; Wang Y; Fuhrman JA; Sun F; Zhu S
    Brief Bioinform; 2020 May; 21(3):777-790. PubMed ID: 30860572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking Long-Read Assemblers for Genomic Analyses of Bacterial Pathogens Using Oxford Nanopore Sequencing.
    Chen Z; Erickson DL; Meng J
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing.
    Chen Z; Erickson DL; Meng J
    BMC Genomics; 2020 Sep; 21(1):631. PubMed ID: 32928108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses.
    Chen Z; Erickson DL; Meng J
    Genomics; 2021 May; 113(3):1366-1377. PubMed ID: 33716184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes.
    Bertrand D; Shaw J; Kalathiyappan M; Ng AHQ; Kumar MS; Li C; Dvornicic M; Soldo JP; Koh JY; Tong C; Ng OT; Barkham T; Young B; Marimuthu K; Chng KR; Sikic M; Nagarajan N
    Nat Biotechnol; 2019 Aug; 37(8):937-944. PubMed ID: 31359005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LMAS: evaluating metagenomic short de novo assembly methods through defined communities.
    Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M
    Gigascience; 2022 Dec; 12():. PubMed ID: 36576131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of defined microbial communities enables effective evaluation of meta-genomic assemblies.
    Greenwald WW; Klitgord N; Seguritan V; Yooseph S; Venter JC; Garner C; Nelson KE; Li W
    BMC Genomics; 2017 Apr; 18(1):296. PubMed ID: 28407798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of long- and short-read metagenomic assembly for low-abundance species and resistance genes.
    Yorki S; Shea T; Cuomo CA; Walker BJ; LaRocque RC; Manson AL; Earl AM; Worby CJ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36804804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of de-novo assembly tools for plasmid metagenome analysis.
    Gupta SK; Raza S; Unno T
    Genes Genomics; 2019 Sep; 41(9):1077-1083. PubMed ID: 31187446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic analyses of multidrug-resistant Salmonella Indiana, Typhimurium, and Enteritidis isolates using MinION and MiSeq sequencing technologies.
    Chen Z; Kuang D; Xu X; González-Escalona N; Erickson DL; Brown E; Meng J
    PLoS One; 2020; 15(7):e0235641. PubMed ID: 32614888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. InteMAP: Integrated metagenomic assembly pipeline for NGS short reads.
    Lai B; Wang F; Wang X; Duan L; Zhu H
    BMC Bioinformatics; 2015 Aug; 16():244. PubMed ID: 26250558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision metagenomics sequencing for food safety: hybrid assembly of Shiga toxin-producing
    Maguire M; Ramachandran P; Tallent S; Mammel MK; Brown EW; Allard MW; Musser SM; González-Escalona N
    Front Microbiol; 2023; 14():1221668. PubMed ID: 37720160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning.
    Afiahayati ; Sato K; Sakakibara Y
    DNA Res; 2015 Feb; 22(1):69-77. PubMed ID: 25431440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-IDBA: a de Novo assembler for metagenomic data.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2011 Jul; 27(13):i94-101. PubMed ID: 21685107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing assembly strategies of Francisella tularensis genomes to infer an evolutionary conservation analysis of genomic structures.
    Neubert K; Zuchantke E; Leidenfrost RM; Wünschiers R; Grützke J; Malorny B; Brendebach H; Al Dahouk S; Homeier T; Hotzel H; Reinert K; Tomaso H; Busch A
    BMC Genomics; 2021 Nov; 22(1):822. PubMed ID: 34773979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.