These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36557704)

  • 21. Variation in sessile microflora during biofilm formation on AISI-304 stainless steel coupons.
    de França FP; Lutterbach MT
    J Ind Microbiol; 1996 Jul; 17(1):6-10. PubMed ID: 8987686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental Evidence for and Genomic Insight into the Preference of Iron-Oxidizing Bacteria for More-Corrosion-Resistant Stainless Steel at Higher Salinities.
    Garrison CE; Price KA; Field EK
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofilm Formation Plays a Crucial Rule in the Initial Step of Carbon Steel Corrosion in Air and Water Environments.
    Ogawa A; Takakura K; Hirai N; Kanematsu H; Kuroda D; Kougo T; Sano K; Terada S
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32092999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples.
    Voordouw G; Menon P; Pinnock T; Sharma M; Shen Y; Venturelli A; Voordouw J; Sexton A
    Front Microbiol; 2016; 7():351. PubMed ID: 27047467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.
    Cote C; Rosas O; Sztyler M; Doma J; Beech I; Basseguy R
    Bioelectrochemistry; 2014 Jun; 97():97-109. PubMed ID: 24355513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.
    Sun H; Shi B; Lytle DA; Bai Y; Wang D
    Environ Sci Process Impacts; 2014 Mar; 16(3):576-85. PubMed ID: 24509822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.
    Lin J; Madida BB
    J Basic Microbiol; 2015 Oct; 55(10):1168-78. PubMed ID: 25847372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.
    Moreira R; Schütz MK; Libert M; Tribollet B; Vivier V
    Bioelectrochemistry; 2014 Jun; 97():69-75. PubMed ID: 24177135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial activities in hydrocarbon-laden wastewaters: Impact on diesel fuel stability and the biocorrosion of carbon steel.
    Liang R; Duncan KE; Le Borgne S; Davidova I; Yakimov MM; Suflita JM
    J Biotechnol; 2017 Aug; 256():68-75. PubMed ID: 28235610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic Corrosion of 304 Stainless Steel Caused by the
    Jia R; Yang D; Xu D; Gu T
    Front Microbiol; 2017; 8():2335. PubMed ID: 29230206
    [No Abstract]   [Full Text] [Related]  

  • 31. Biocide-mediated corrosion of coiled tubing.
    Sharma M; An D; Liu T; Pinnock T; Cheng F; Voordouw G
    PLoS One; 2017; 12(7):e0181934. PubMed ID: 28746397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.
    Li Y; Zhang P; Cai W; Rosenblatt JS; Raad II; Xu D; Gu T
    World J Microbiol Biotechnol; 2016 Feb; 32(2):23. PubMed ID: 26745983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Corrosion behavior and interaction of mixed bacteria on carbon steel in reclaimed water.
    Chu Y; Xu P; Ou Y; Bai P; Wei Z
    Sci Total Environ; 2020 May; 718():136679. PubMed ID: 32092508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria.
    Critchley MM; Cromar NJ; McClure NC; Fallowfield HJ
    J Appl Microbiol; 2003; 94(3):501-7. PubMed ID: 12588559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbially induced corrosion of carbon steel in deep groundwater environment.
    Rajala P; Carpén L; Vepsäläinen M; Raulio M; Sohlberg E; Bomberg M
    Front Microbiol; 2015; 6():647. PubMed ID: 26257707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel.
    Javed MA; Stoddart PR; McArthur SL; Wade SA
    Biofouling; 2013 Sep; 29(8):939-52. PubMed ID: 23906317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of mixed species biofilm on corrosion of X65 steel in seawater environment.
    Lv M; Du M; Li Z
    Bioelectrochemistry; 2022 Feb; 143():107951. PubMed ID: 34601262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration.
    Brauer JI; Makama Z; Bonifay V; Aydin E; Kaufman ED; Beech IB; Sunner J
    Biointerphases; 2015 Mar; 10(1):019003. PubMed ID: 25708633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.