BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 36558090)

  • 1. In Vitro and In Silico Studies for the Identification of Potent Metabolites of Some High-Altitude Medicinal Plants from Nepal Inhibiting SARS-CoV-2 Spike Protein.
    Basnet S; Marahatha R; Shrestha A; Bhattarai S; Katuwal S; Sharma KR; Marasini BP; Dahal SR; Basnyat RC; Patching SG; Parajuli N
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tinocordiside from
    Balkrishna A; Pokhrel S; Varshney A
    Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of phytoconstituents of
    Choudhary P; Singh T; Amod A; Singh S
    J Biomol Struct Dyn; 2023 Jun; 41(9):4106-4123. PubMed ID: 35467486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Withanone from
    Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A
    Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding of heparin to spike glycoprotein inhibits SARS-CoV-2 infection by three mechanisms.
    Paiardi G; Richter S; Oreste P; Urbinati C; Rusnati M; Wade RC
    J Biol Chem; 2022 Feb; 298(2):101507. PubMed ID: 34929169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants -
    Shree P; Mishra P; Selvaraj C; Singh SK; Chaube R; Garg N; Tripathi YB
    J Biomol Struct Dyn; 2022 Jan; 40(1):190-203. PubMed ID: 32851919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor.
    Rajpoot S; Ohishi T; Kumar A; Pan Q; Banerjee S; Zhang KYJ; Baig MS
    Drugs R D; 2021 Sep; 21(3):273-283. PubMed ID: 34324175
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Pandey AK; Verma S
    Drug Dev Ind Pharm; 2022 Oct; 48(10):539-551. PubMed ID: 36250723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Kaempferol as Viral Entry Inhibitor and DL-Arginine as Viral Replication Inhibitor from Selected Plants of Indian Traditional Medicine against COVID-19: An
    Jayaprakashkamath A; Murali M; Nair B; Benny F; Mani RP; Suresh D; Presanna AT; Areekkara AN; Nath LR
    Curr Comput Aided Drug Des; 2023; 19(4):313-323. PubMed ID: 36635906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Search for Potential COVID-19 Drugs from Ayurvedic Medicinal Plants to Identify Potential Inhibitors against SARS-CoV-2 Targets.
    Alagarsamy V; Solomon VR; Sundar PS; Kulkarni VS; Sulthana MT; Aishwarya AD; Narendhar B; Murugesan S
    Curr Comput Aided Drug Des; 2023; 19(1):51-67. PubMed ID: 36424783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADMET profile and virtual screening of plant and microbial natural metabolites as SARS-CoV-2 S1 glycoprotein receptor binding domain and main protease inhibitors.
    Padhi S; Masi M; Chourasia R; Rajashekar Y; Rai AK; Evidente A
    Eur J Pharmacol; 2021 Jan; 890():173648. PubMed ID: 33069672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing.
    Aloufi BH; Snoussi M; Sulieman AME
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cameroonian medicinal plants as potential candidates of SARS-CoV-2 inhibitors.
    Fouedjou RT; Chtita S; Bakhouch M; Belaidi S; Ouassaf M; Djoumbissie LA; Tapondjou LA; Abul Qais F
    J Biomol Struct Dyn; 2022; 40(19):8615-8629. PubMed ID: 33908318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactin-like lipopeptides from
    Baindara P; Chowdhury T; Roy D; Mandal M; Mandal SM
    J Biomol Struct Dyn; 2023; 41(23):14152-14163. PubMed ID: 37021470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Spike protein and lipid membrane of SARS-CoV-2 with Ursodeoxycholic acid, an in-silico analysis.
    Rodal Canales FJ; Pérez-Campos Mayoral L; Hernández-Huerta MT; Sánchez Navarro LM; Matias-Cervantes CA; Martínez Cruz M; Cruz Parada E; Zenteno E; Ramos-Martínez EG; Pérez-Campos Mayoral E; Romero Díaz C; Pérez-Campos E
    Sci Rep; 2021 Nov; 11(1):22288. PubMed ID: 34782703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant derived active compounds as potential anti SARS-CoV-2 agents: an
    Kashyap D; Jakhmola S; Tiwari D; Kumar R; Moorthy NSHN; Elangovan M; Brás NF; Jha HC
    J Biomol Struct Dyn; 2022; 40(21):10629-10650. PubMed ID: 34225565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COVID-19: docking-based virtual screening and molecular dynamics study to identify potential SARS-CoV-2 spike protein inhibitors from plant-based phenolic compounds.
    Moradkhani S; Farmani A; Saidijam M; Taherkhani A
    Acta Virol; 2021; 65(3):288-302. PubMed ID: 34565157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.
    Fantini J; Chahinian H; Yahi N
    Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Tiwari V
    Biol Open; 2020 Oct; 9(10):. PubMed ID: 32878881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, dynamic behaviour, in-vitro and computational investigations of Schiff's bases of 1,3-diphenyl urea derivatives against SARS-CoV-2 spike protein.
    Ullah S; Ullah A; Waqas M; Halim SA; Pasha AR; Shafiq Z; Mali SN; Jawarkar RD; Khan A; Khalid A; Abdalla AN; Kashtoh H; Al-Harrasi A
    Sci Rep; 2024 Jun; 14(1):12588. PubMed ID: 38822113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.