These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36558251)

  • 1. Balancing the Number of Quantum Wells in HgCdTe/CdHgTe Heterostructures for Mid-Infrared Lasing.
    Fadeev MA; Dubinov AA; Razova AA; Yantser AA; Utochkin VV; Rumyantsev VV; Aleshkin VY; Gavrilenko VI; Mikhailov NN; Dvoretsky SA; Morozov SV
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulated Emission up to 2.75 µm from HgCdTe/CdHgTe QW Structure at Room Temperature.
    Utochkin VV; Kudryavtsev KE; Dubinov AA; Fadeev MA; Rumyantsev VV; Razova AA; Andronov EV; Aleshkin VY; Gavrilenko VI; Mikhailov NN; Dvoretsky SA; Teppe F; Morozov SV
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-IR lasing in HgCdTe multiple quantum well edge-emitting ridges.
    Utochkin V; Kudryavtsev K; Rumyantsev V; Fadeev M; Razova A; Mikhailov N; Shengurov D; Gusev S; Gusev N; Morozov S
    Appl Opt; 2023 Nov; 62(32):8529-8534. PubMed ID: 38037965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers.
    Rumyantsev VV; Razova AA; Bovkun LS; Tatarskiy DA; Mikhailovskii VY; Zholudev MS; Ikonnikov AV; Uaman Svetikova TA; Maremyanin KV; Utochkin VV; Fadeev MA; Remesnik VG; Aleshkin VY; Mikhailov NN; Dvoretsky SA; Potemski M; Orlita M; Gavrilenko VI; Morozov SV
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulated emission in the 2.8-3.5 μm wavelength range from Peltier cooled HgTe/CdHgTe quantum well heterostructures.
    Fadeev MA; Rumyantsev VV; Kadykov AM; Dubinov AA; Antonov AV; Kudryavtsev KE; Dvoretskii SA; Mikhailov NN; Gavrilenko VI; Morozov SV
    Opt Express; 2018 May; 26(10):12755-12760. PubMed ID: 29801310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform.
    Mączko HS; Kudrawiec R; Gladysiewicz M
    Sci Rep; 2016 Sep; 6():34082. PubMed ID: 27686056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic gain analysis of modulation-doped GeSn/SiGeSn quantum wells: epitaxial design toward high-temperature lasing.
    Fujisawa T; Arai M; Saitoh K
    Opt Express; 2019 Feb; 27(3):2457-2464. PubMed ID: 30732283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin active region HgCdTe-based quantum cascade laser with quasi-relativistic dispersion law.
    Dubinov AA; Ushakov DV; Afonenko AA; Khabibullin RA; Fadeev MA; Morozov SV
    Opt Lett; 2022 Oct; 47(19):5048-5051. PubMed ID: 36181183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Giant" Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing.
    Isik F; Delikanli S; Durmusoglu EG; Isik AT; Shabani F; Baruj HD; Demir HV
    Small; 2024 Mar; ():e2309494. PubMed ID: 38441357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm.
    Kopytko M; Sobieski J; Gawron W; Martyniuk P
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Strained III-V-V Coaxial Nanowire Quantum Wells with Strong Carrier Confinement.
    Zhang Y; Davis G; Fonseka HA; Velichko A; Gustafsson A; Godde T; Saxena D; Aagesen M; Parkinson PW; Gott JA; Huo S; Sanchez AM; Mowbray DJ; Liu H
    ACS Nano; 2019 May; 13(5):5931-5938. PubMed ID: 31067033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers.
    Saxena D; Jiang N; Yuan X; Mokkapati S; Guo Y; Tan HH; Jagadish C
    Nano Lett; 2016 Aug; 16(8):5080-6. PubMed ID: 27459233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of photoluminescence of GaAsBi quantum wells by parabolic design of AlGaAs barriers.
    Pūkienė S; Karaliūnas M; Jasinskas A; Dudutienė E; Čechavičius B; Devenson J; Butkutė R; Udal A; Valušis G
    Nanotechnology; 2019 Nov; 30(45):455001. PubMed ID: 31362278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral carrier injection for the uniform pumping of several quantum wells in InGaN/GaN light-emitting diodes.
    Schiavon D; Chlipala M; Perlin P
    Opt Express; 2021 Feb; 29(3):3001-3010. PubMed ID: 33770908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HgCdTe-based quantum cascade lasers operating in the GaAs phonon Reststrahlen band predicted by the balance equation method.
    Ushakov D; Afonenko A; Khabibullin R; Ponomarev D; Aleshkin V; Morozov S; Dubinov A
    Opt Express; 2020 Aug; 28(17):25371-25382. PubMed ID: 32907059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core-Multishell Nanowires.
    Stettner T; Thurn A; Döblinger M; Hill MO; Bissinger J; Schmiedeke P; Matich S; Kostenbader T; Ruhstorfer D; Riedl H; Kaniber M; Lauhon LJ; Finley JJ; Koblmüller G
    Nano Lett; 2018 Oct; 18(10):6292-6300. PubMed ID: 30185051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of surface plasmon lasing in HgTe quantum wells with population inversion.
    Kapralov K; Alymov G; Svintsov D; Dubinov A
    J Phys Condens Matter; 2020 Feb; 32(6):065301. PubMed ID: 31627193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rashba Spin Splitting in HgCdTe Quantum Wells with Inverted and Normal Band Structures.
    Gudina SV; Neverov VN; Popov MR; Turutkin KV; Podgornykh SM; Shelushinina NG; Yakunin MV; Mikhailov NN; Dvoretsky SA
    Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependencies of the emission behavior and quantum well structure of a regularly-patterned, InGaN/GaN quantum-well nanorod array on growth condition.
    Liao CH; Tu CG; Chang WM; Su CY; Shih PY; Chen HT; Yao YF; Hsieh C; Chen HS; Lin CH; Yu CK; Kiang YW; Yang CC
    Opt Express; 2014 Jul; 22(14):17303-19. PubMed ID: 25090544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent resonance energy transfer from semiconductor quantum wells to graphene.
    Yu YJ; Kim KS; Nam J; Kwon SR; Byun H; Lee K; Ryou JH; Dupuis RD; Kim J; Ahn G; Ryu S; Ryu MY; Kim JS
    Nano Lett; 2015 Feb; 15(2):896-902. PubMed ID: 25562118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.