These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36558251)

  • 41. Growth of κ-([Al,In]
    Schultz T; Kneiß M; Storm P; Splith D; von Wenckstern H; Koch CT; Hammud A; Grundmann M; Koch N
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29535-29541. PubMed ID: 37278556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental Study on Damage Effect of Mid-Infrared Pulsed Laser on Charge Coupled Device (CCD) and HgCgTe Detectors.
    Liu Y; Zhou F; Wang Y; Zhang Y; Zhang Y; Zheng H; Shao J
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Auger-Assisted Electron Transfer between Adjacent Quantum Wells in Two-Dimensional Layered Perovskites.
    Yin Z; Leng J; Wang S; Liang G; Tian W; Wu K; Jin S
    J Am Chem Soc; 2021 Mar; 143(12):4725-4731. PubMed ID: 33734712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface Nanostructuring during Selective Area Epitaxy of Heterostructures with InGaAs QWs in the Ultra-Wide Windows.
    Shamakhov V; Nikolaev D; Slipchenko S; Fomin E; Smirnov A; Eliseyev I; Pikhtin N; Kop Ev P
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser enabled by Suppression of Trap-Assisted Auger Recombination.
    Taghipour N; Whitworth GL; Othonos A; Dalmases M; Pradhan S; Wang Y; Kumar G; Konstantatos G
    Adv Mater; 2022 Jan; 34(3):e2107532. PubMed ID: 34762320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantum Confinement in Oxide Heterostructures: Room-Temperature Intersubband Absorption in SrTiO
    Ortmann JE; Nookala N; He Q; Gao L; Lin C; Posadas AB; Borisevich AY; Belkin MA; Demkov AA
    ACS Nano; 2018 Aug; 12(8):7682-7689. PubMed ID: 30052026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of AlGaAs cladding layers on the luminescence of GaAs/GaAs1-xBix/GaAs heterostructures.
    Mazur YI; Dorogan VG; de Souza LD; Fan D; Benamara M; Schmidbauer M; Ware ME; Tarasov GG; Yu SQ; Marques GE; Salamo GJ
    Nanotechnology; 2014 Jan; 25(3):035702. PubMed ID: 24346504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Radiative recombination in narrow gap HgTe/CdHgTe quantum well heterostructures for laser applications.
    Aleshkin VY; Dubinov AA; Rumyantsev VV; Fadeev MA; Domnina OL; Mikhailov NN; Dvoretsky SA; Teppe F; Gavrilenko VI; Morozov SV
    J Phys Condens Matter; 2018 Dec; 30(49):495301. PubMed ID: 30457115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multilayer Graphene-GeSn Quantum Well Heterostructure SWIR Light Source.
    Cong H; Yang F; Xue C; Yu K; Zhou L; Wang N; Cheng B; Wang Q
    Small; 2018 Apr; 14(17):e1704414. PubMed ID: 29611368
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Threshold energies of Auger recombination in HgTe/CdHgTe quantum well heterostructures with 30-70 meV bandgap.
    Aleshkin VY; Dubinov AA; Rumyantsev VV; Morozov SV
    J Phys Condens Matter; 2019 Oct; 31(42):425301. PubMed ID: 31284278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Terahertz plasmons in doped HgTe quantum well heterostructures: dispersion, losses, and amplification.
    Aleshkin VY; Dubinov AA; Gavrilenko VI; Teppe F
    Appl Opt; 2021 Oct; 60(28):8991-8998. PubMed ID: 34613129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.
    Chaqmaqchee FA; Mazzucato S; Oduncuoglu M; Balkan N; Sun Y; Gunes M; Hugues M; Hopkinson M
    Nanoscale Res Lett; 2011 Jan; 6(1):104. PubMed ID: 21711630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.
    Liu L; Chen Y; Huang Z; Du W; Zhan P; Wang Z
    Sci Rep; 2016 Jul; 6():30414. PubMed ID: 27456691
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large Optical Gain AlInN-Delta-GaN Quantum Well for Deep Ultraviolet Emitters.
    Tan CK; Sun W; Borovac D; Tansu N
    Sci Rep; 2016 Mar; 6():22983. PubMed ID: 26961170
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts.
    Tivarus C; Pelz JP; Hudait MK; Ringel SA
    Phys Rev Lett; 2005 May; 94(20):206803. PubMed ID: 16090268
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-threshold stimulated emission using colloidal quantum wells.
    She C; Fedin I; Dolzhnikov DS; Demortière A; Schaller RD; Pelton M; Talapin DV
    Nano Lett; 2014 May; 14(5):2772-7. PubMed ID: 24773282
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of pumping delay on the modulation bandwidth in double tunneling-injection quantum dot lasers.
    Asryan LV
    Opt Lett; 2017 Jan; 42(1):97-100. PubMed ID: 28059189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of electron scattering by acoustic-phonons in two types of quantum wells with GaAs and GaN materials.
    Phong TC; Minh LN; Hien ND
    Nanoscale Adv; 2024 Jan; 6(3):832-845. PubMed ID: 38298586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-Frequency Noise Characteristics of (Al, Ga)As and Ga(As, Bi) Quantum Well Structures for NIR Laser Diodes.
    Armalytė S; Glemža J; Jonkus V; Pralgauskaitė S; Matukas J; Pūkienė S; Zelioli A; Dudutienė E; Naujokaitis A; Bičiūnas A; Čechavičius B; Butkutė R
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PCSEL Performance of Type-I InGaAsSb Double-QWs Laser Structure Prepared by MBE.
    Cheng HW; Lin SC; Li ZL; Sun KW; Lee CP
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.