These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36558314)

  • 1. Microwave Heating of the Catalyst Bed as a Way of Energy-Saving Oxidative Dehydrogenation of Ethane on a Mo-V-Te-Nb-O
    Kucherov AV; Davshan NA; Finashina ED; Kustov L
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (amm)oxidation.
    Guliants VV; Bhandari R; Hughett AR; Bhatt S; Schuler BD; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2006 Mar; 110(12):6129-40. PubMed ID: 16553426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts.
    López Nieto JM; Botella P; Vázquez MI; Dejoz A
    Chem Commun (Camb); 2002 Sep; (17):1906-7. PubMed ID: 12271668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane.
    Cheng MJ; Goddard WA
    J Am Chem Soc; 2015 Oct; 137(41):13224-7. PubMed ID: 26423704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane.
    Weng W; Davies M; Whiting G; Solsona B; Kiely CJ; Carley AF; Taylor SH
    Phys Chem Chem Phys; 2011 Oct; 13(38):17395-404. PubMed ID: 21881631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane.
    Zhu H; Rosenfeld DC; Anjum DH; Caps V; Basset JM
    ChemSusChem; 2015 Apr; 8(7):1254-63. PubMed ID: 25755222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system.
    Cong P; Dehestani A; Doolen R; Giaquinta DM; Guan S; Markov V; Poojary D; Self K; Turner H; Weinberg WH
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11077-80. PubMed ID: 10500131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoO
    Novotný P; Yusuf S; Li F; Lamb HH
    J Chem Phys; 2020 Jan; 152(4):044713. PubMed ID: 32007029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Catalyst with Microwave Induced Plasma Jet Combined with Spouted Bed.
    Chung JY; Kodama S; Sekiguchi H
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6849-6855. PubMed ID: 31027040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol to Acetaldehyde Conversion under Thermal and Microwave Heating of ZnO-CuO-SiO
    Kustov AL; Tarasov AL; Tkachenko OP; Mishin IV; Kapustin GI; Kustov LM
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of surface Te, Nb, and Sb oxides in propane oxidation to acrylic acid over bulk orthorhombic Mo-V-O phase.
    Guliants VV; Bhandari R; Swaminathan B; Vasudevan VK; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2005 Dec; 109(50):24046-55. PubMed ID: 16375396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted hydrothermal synthesis of monophasic Mo-V-Te-Nb-O mixed oxide catalyst for the selective ammoxidation of propane.
    Shiju NR; Guliants VV
    Chemphyschem; 2007 Aug; 8(11):1615-7. PubMed ID: 17614349
    [No Abstract]   [Full Text] [Related]  

  • 13. The evolution of the M1 local structure during preparation of VMoNbTeO catalysts for ethane oxidative dehydrogenation to ethylene.
    Kardash TY; Lazareva EV; Svintsitskiy DA; Ishchenko AV; Bondareva VM; Neder RB
    RSC Adv; 2018 Oct; 8(63):35903-35916. PubMed ID: 35558492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts.
    Wachs IE; Jehng JM; Ueda W
    J Phys Chem B; 2005 Feb; 109(6):2275-84. PubMed ID: 16851220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Dehydrogenation of Ethane on the IrO
    Bian Y; Kim M; Li T; Asthagiri A; Weaver JF
    J Am Chem Soc; 2018 Feb; 140(7):2665-2672. PubMed ID: 29376362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on catalytic oxidation of benzene by microwave heating].
    Zhang YC; Bo LL; Wang XH; Liu HN; Zhang H
    Huan Jing Ke Xue; 2012 Aug; 33(8):2759-65. PubMed ID: 23213902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene production by ODHE in catalytically modified Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) membrane reactors.
    Lobera MP; Escolástico S; Garcia-Fayos J; Serra JM
    ChemSusChem; 2012 Aug; 5(8):1587-96. PubMed ID: 22791570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-assisted direct synthesis of butene from high-selectivity methane.
    Lu YH; Li K; Lu YW
    R Soc Open Sci; 2017 Dec; 4(12):171367. PubMed ID: 29308261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Co
    Hu L; Zhang G; Liu M; Wang Q; Wang P
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4656-4666. PubMed ID: 29197055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane.
    Popescu I; Skoufa Z; Heracleous E; Lemonidou A; Marcu IC
    Phys Chem Chem Phys; 2015 Mar; 17(12):8138-47. PubMed ID: 25728825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.