These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36558341)

  • 1. Ferroelectric Devices for Content-Addressable Memory.
    Tarkov M; Tikhonenko F; Popov V; Antonov V; Miakonkikh A; Rudenko K
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Content-Addressable Memories and Transformable Logic Circuits Based on Ferroelectric Reconfigurable Transistors for In-Memory Computing.
    Zhao Z; Kang J; Tunga A; Ryu H; Shukla A; Rakheja S; Zhu W
    ACS Nano; 2024 Jan; 18(4):2763-2771. PubMed ID: 38232763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental demonstration of combination-encoding content-addressable memory of 0.75 bits per switch utilizing Hf-Zr-O ferroelectric tunnel junctions.
    Nguyen MC; You J; Sim Y; Choi R; Jeong DS; Kwon D
    Mater Horiz; 2024 Jul; 11(14):3307-3315. PubMed ID: 38691165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferroelectric Hafnia-Based M3D FeTFTs Annealed at Extremely Low Temperatures and TCAM Cells for Computing-in-Memory Applications.
    Joh H; Nam S; Jung M; Shin H; Cho SH; Jeon S
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analog content-addressable memories with memristors.
    Li C; Graves CE; Sheng X; Miller D; Foltin M; Pedretti G; Strachan JP
    Nat Commun; 2020 Apr; 11(1):1638. PubMed ID: 32242006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Memory Computing with Memristor Content Addressable Memories for Pattern Matching.
    Graves CE; Li C; Sheng X; Miller D; Ignowski J; Kiyama L; Strachan JP
    Adv Mater; 2020 Sep; 32(37):e2003437. PubMed ID: 32761709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable Compute-In-Memory on Field-Programmable Ferroelectric Diodes.
    Liu X; Ting J; He Y; Fiagbenu MMA; Zheng J; Wang D; Frost J; Musavigharavi P; Esteves G; Kisslinger K; Anantharaman SB; Stach EA; Olsson RH; Jariwala D
    Nano Lett; 2022 Sep; 22(18):7690-7698. PubMed ID: 36121208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferroelectric Content-Addressable Memory Cells with IGZO Channel: Impact of Retention Degradation on the Multibit Operation.
    Sk MR; Thunder S; Lehninger D; Sanctis S; Raffel Y; Lederer M; Jank MPM; Kämpfe T; De S; Chakrabarti B
    ACS Appl Electron Mater; 2023 Feb; 5(2):812-820. PubMed ID: 36873263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulative Polarization Reversal in Nanoscale Ferroelectric Transistors.
    Mulaosmanovic H; Mikolajick T; Slesazeck S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23997-24002. PubMed ID: 29947210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferroelectric-Dielectric Mixed Buffer Layer for Enhanced Electrical Performance of Organic Ferroelectric Memory Transistors.
    Kim JR; Boampong AA; Choi Y; Kim MH
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4651-4656. PubMed ID: 30913763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferroelectric field-effect transistors for logic and in-situ memory applications.
    Liu L; Hou X; Zhang H; Wang J; Zhou P
    Nanotechnology; 2020 Jun; 31(42):424007. PubMed ID: 32599566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a ferroelectric tunnel junction by ultraviolet-visible absorption using a removable liquid electrode.
    Lee HS; Kang KM; Yeom GY; Park HH
    Nanotechnology; 2016 May; 27(21):215704. PubMed ID: 27087674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon based Bi
    Liu G; Wang W; Guo Z; Jia X; Zhao Z; Zhou Z; Niu J; Duan G; Yan X
    Nanoscale; 2023 Aug; 15(31):13009-13017. PubMed ID: 37485606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferroelectric field-effect transistors based on HfO
    Mulaosmanovic H; Breyer ET; Dünkel S; Beyer S; Mikolajick T; Slesazeck S
    Nanotechnology; 2021 Sep; 32(50):. PubMed ID: 34320479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing.
    Chen C; Zhou Y; Tong L; Pang Y; Xu J
    Adv Mater; 2024 May; ():e2400332. PubMed ID: 38739927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep random forest with ferroelectric analog content addressable memory.
    Yin X; Müller F; Laguna AF; Li C; Huang Q; Shi Z; Lederer M; Laleni N; Deng S; Zhao Z; Imani M; Shi Y; Niemier M; Hu XS; Zhuo C; Kämpfe T; Ni K
    Sci Adv; 2024 Jun; 10(23):eadk8471. PubMed ID: 38838137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In
    Park S; Lee D; Kang J; Choi H; Park JH
    Nat Commun; 2023 Oct; 14(1):6778. PubMed ID: 37880220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Memristors Based on Single-Crystalline Ferroelectric Tunnel Junctions.
    Luo ZD; Peters JJP; Sanchez AM; Alexe M
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23313-23319. PubMed ID: 31181153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferroelectric transistors with asymmetric double gate for memory window exceeding 12 V and disturb-free read.
    Mulaosmanovic H; Kleimaier D; Dünkel S; Beyer S; Mikolajick T; Slesazeck S
    Nanoscale; 2021 Oct; 13(38):16258-16266. PubMed ID: 34549741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.
    Van NH; Lee JH; Whang D; Kang DJ
    Nanoscale; 2015 Jul; 7(27):11660-6. PubMed ID: 26098677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.