These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3655837)

  • 1. Morphological responses to local CNS trauma: sprouting and synaptogenesis within membranes implanted into mature cerebral cortex of the rat.
    Kristt DA
    J Neuropathol Exp Neurol; 1987 Nov; 46(6):668-81. PubMed ID: 3655837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The cytodifferentiation of the rat spinal cord and neocortical neural elements when implanted into a peripheral nerve].
    Petrova ES; Chumasov EI
    Tsitologiia; 1993; 35(1):59-64. PubMed ID: 8475578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TNF-alpha contributes to axonal sprouting and functional recovery following traumatic brain injury.
    Oshima T; Lee S; Sato A; Oda S; Hirasawa H; Yamashita T
    Brain Res; 2009 Sep; 1290():102-10. PubMed ID: 19616519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of presynaptic reexpression of an adhesion protein in lamina II after dorsal root deafferentation in adult rat spinal cord.
    Zhang B; Levitt P; Murray M
    Exp Neurol; 1998 Feb; 149(2):468-72. PubMed ID: 9500956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules.
    Fitch MT; Silver J
    Exp Neurol; 1997 Dec; 148(2):587-603. PubMed ID: 9417835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system.
    Swann JW; Hablitz JJ
    Ment Retard Dev Disabil Res Rev; 2000; 6(4):258-67. PubMed ID: 11107191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic spine plasticity: looking beyond development.
    Harms KJ; Dunaevsky A
    Brain Res; 2007 Dec; 1184():65-71. PubMed ID: 16600191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat.
    Newcomb JK; Zhao X; Pike BR; Hayes RL
    Exp Neurol; 1999 Jul; 158(1):76-88. PubMed ID: 10448419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remodeling of synaptic structures in the motor cortex following spinal cord injury.
    Kim BG; Dai HN; McAtee M; Vicini S; Bregman BS
    Exp Neurol; 2006 Apr; 198(2):401-15. PubMed ID: 16443221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reorganization of the cortico-spinal tract after unilateral lesions of the neocortex].
    Obukhova GP; Varlinskaia EI; Krutikova NB
    Biull Eksp Biol Med; 1989 Nov; 108(11):626-8. PubMed ID: 2633836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic regenerative ability of mature CNS neurons.
    Chuckowree JA; Dickson TC; Vickers JC
    Neuroscientist; 2004 Aug; 10(4):280-5. PubMed ID: 15271255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
    Vavrek R; Girgis J; Tetzlaff W; Hiebert GW; Fouad K
    Brain; 2006 Jun; 129(Pt 6):1534-45. PubMed ID: 16632552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence?
    Zinck ND; Downie JW
    Prog Brain Res; 2006; 152():147-62. PubMed ID: 16198699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord plasticity in acquisition and maintenance of motor skills.
    Wolpaw JR
    Acta Physiol (Oxf); 2007 Feb; 189(2):155-69. PubMed ID: 17250566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of the corticospinal tract following midthoracic spinal injury in the postnatal rat.
    Bernstein DR; Stelzner DJ
    J Comp Neurol; 1983 Dec; 221(4):382-400. PubMed ID: 6662981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord.
    King VR; Phillips JB; Hunt-Grubbe H; Brown R; Priestley JV
    Biomaterials; 2006 Jan; 27(3):485-96. PubMed ID: 16102813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of excitatory and inhibitory postsynaptic potentials in the rat neocortex.
    Sutor B; Luhmann HJ
    Perspect Dev Neurobiol; 1995; 2(4):409-19. PubMed ID: 7757410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microglial networks of the brain and their role in neuronal network plasticity after lesion.
    Cullheim S; Thams S
    Brain Res Rev; 2007 Aug; 55(1):89-96. PubMed ID: 17509690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.