These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36558637)

  • 1. Development and operation of the Hemispherical Blackbody (HSBB) for the calibration of infrared radiometers with a hemispherical acceptance angle.
    Feierabend M; Reiniger M; Bories J; Adibekyan A; Häfner R; Müller C; Fehse D; Gröbner J; Müller I; Monte C
    Opt Express; 2022 Dec; 30(26):46991-47003. PubMed ID: 36558637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating-sphere-free reflectometry of blackbody cavity emissivity using the ratio of hemispherical-given solid angle reflections.
    Song J; Hao X; Yuan Z; Ding L
    Opt Express; 2020 Aug; 28(16):23294-23305. PubMed ID: 32752328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downwelling longwave radiation and sensible heat flux observations are critical for surface temperature and emissivity estimation from flux tower data.
    Thakur G; Schymanski SJ; Mallick K; Trebs I; Sulis M
    Sci Rep; 2022 May; 12(1):8592. PubMed ID: 35597778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for optimizing the reference temperature in the effective emissivity calculation of nonisothermal blackbody cavities.
    He S; Dai C; Wang Y; Liu J; Xie Y; Feng G; Wang J
    Opt Express; 2020 Sep; 28(20):29829-29842. PubMed ID: 33114873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly emissive spaceborne blackbody radiation source based on light capture.
    Zhou J; Hao X; Wang X; Song J; Xing Z; Li X; Wang B; Han C; Sima RH
    Opt Express; 2022 Jun; 30(12):20859-20870. PubMed ID: 36224821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Implementation of a Ku-Band High-Precision Blackbody Calibration Target.
    Liu J; Sun Z; Sun G; Li Y; Cao T; Tang W
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-area perfect blackbody sheets having aperiodic array of surface micro-cavities for high-precision thermal imager calibration.
    Shimizu Y; Koshikawa H; Imbe M; Yamaki T; Amemiya K
    Opt Express; 2020 Jul; 28(15):22606-22616. PubMed ID: 32752518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface.
    Cheng J; Cheng X; Meng X; Zhou G
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small-size transfer blackbody cavity for calibration of infrared ear thermometers.
    Kim GJ; Yoo YS; Kim BH; Lim SD; Hyun Song J
    Physiol Meas; 2014 May; 35(5):753-62. PubMed ID: 24671115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sky-scanning radiometer for absolute measurements of atmospheric long-wave radiation.
    Philipona R
    Appl Opt; 2001 May; 40(15):2376-83. PubMed ID: 18357246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RAVAN: CubeSat Demonstration for Multi-Point Earth Radiation Budget Measurements.
    Swartz WH; Lorentz SR; Papadakis SJ; Huang PM; Smith AW; Deglau DM; Yu Y; Reilly SM; Reilly NM; Anderson DE
    Remote Sens (Basel); 2019 Apr; 11(7):796. PubMed ID: 31157118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extremely broadband ultralight thermally-emissive optical coatings.
    Naqavi A; Loke SP; Kelzenberg MD; Callahan DM; Tiwald T; Warmann EC; Espinet-González P; Vaidya N; Roy TA; Huang JS; Vinogradova TG; Atwater HA
    Opt Express; 2018 Jul; 26(14):18545-18562. PubMed ID: 30114033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on Method for Measuring Coating Emissivity by Applying Active Irradiation Based on Infrared Thermal Imager.
    Li Y; Zhang P; Chen G; Li Y; Hua W; Li Y; Jiao Z
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blackbody source in the -50 to +200 degrees C range for the calibration of radiometers and radiation thermometers.
    Quinn TJ; Martin JE
    Appl Opt; 1991 Nov; 30(31):4486-8. PubMed ID: 20717236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted dynamic electrothermal performance of thermistor bolometer radiometers for Earth radiation budget applications.
    Haeffelin MP; Mahan JR; Priestley KJ
    Appl Opt; 1997 Oct; 36(28):7129-42. PubMed ID: 18264219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of spectral responsivity of Robertson-Berger-type ultraviolet radiometers for long-term observations.
    di Sarra A; Disterhoft P; DeLuisi JJ
    Photochem Photobiol; 2002 Jul; 76(1):64-72. PubMed ID: 12126309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two blackbody radiometers of high accuracy.
    Kendall JM; Berdahl CM
    Appl Opt; 1970 May; 9(5):1082-91. PubMed ID: 20076332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Fabrication, and Performance Evaluation of Portable and Large-Area Blackbody System.
    Bae JY; Choi W; Hong SJ; Kim S; Kim E; Lee CH; Han YH; Hur H; Lee KS; Chang KS; Kim GH; Kim G
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux.
    Wu W; Liu Y
    Philos Trans R Soc Lond B Biol Sci; 2010 May; 365(1545):1367-76. PubMed ID: 20368255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective emissivity of a blackbody cavity formed by two coaxial tubes.
    Mei G; Zhang J; Zhao S; Xie Z
    Appl Opt; 2014 Apr; 53(11):2507-14. PubMed ID: 24787424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.