These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36558664)

  • 1. Strong enhancement of Goos-Hänchen shift through the resonant optical tunneling effect.
    Xiang L; Liu W; Wei Z; Meng H; Liu H; Guo J; Zhi Y; Huang Z; Li H; Wang F
    Opt Express; 2022 Dec; 30(26):47338-47349. PubMed ID: 36558664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.
    Chen Y; Ban Y; Zhu QB; Chen X
    Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Goos-Hänchen Shift Surface Plasmon Resonance Sensor Based on Graphene-hBN Heterostructure.
    Liu Z; Lu F; Jiang L; Lin W; Zheng Z
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34205540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goos-Hänchen effect for optical vibrational modes in a semiconductor structure.
    Villegas D; Arriaga J; de León-Pérez F; Pérez-Álvarez R
    J Phys Condens Matter; 2017 Mar; 29(12):125301. PubMed ID: 28070021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goos-Hänchen shift for coupled vibrational modes in a semiconductor structure.
    Villegas D; Lazcano Z; Arriaga J; Pérez-Álvarez R; de León-Pérez F
    J Phys Condens Matter; 2024 May; 36(32):. PubMed ID: 38478995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy flux and Goos-Hänchen shift in frustrated total internal reflection.
    Chen X; Lu XJ; Zhao PL; Zhu QB
    Opt Lett; 2012 May; 37(9):1526-8. PubMed ID: 22555726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Enhancement of the Goos-Hänchen Shift with a Metasurface Based on Bound States in the Continuum.
    Jiang X; Fang B; Zhan C
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos-Hänchen effect.
    Shaarawi AM; Tawfik BH; Besieris IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046626. PubMed ID: 12443368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goos-Hänchen shifts at the interfaces between left- and right-handed media.
    Qing DK; Chen G
    Opt Lett; 2004 Apr; 29(8):872-4. PubMed ID: 15119406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave.
    Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J
    Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of giant Goos-Hänchen shift and high reflectance in Dirac semimetal based multilayered structure.
    Yin D; Liu W; Zhang M; Da H
    Phys Chem Chem Phys; 2024 Apr; 26(14):10974-10981. PubMed ID: 38526392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunneling-induced giant Goos-Hänchen shift in quantum wells.
    Yang WX; Liu S; Zhu Z; Ziauddin ; Lee RK
    Opt Lett; 2015 Jul; 40(13):3133-6. PubMed ID: 26125385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance.
    Yang R; Zhu W; Li J
    Opt Express; 2014 Jan; 22(2):2043-50. PubMed ID: 24515213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable low-threshold bistable Goos-Hänchen shift and Imbert-Fedorov shift using long-range graphene surface plasmons within the terahertz region.
    Kar A; Goswami N; Saha A
    Appl Opt; 2019 Dec; 58(34):9376-9383. PubMed ID: 31873528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realization of large transmitted Goos-Hänchen shifts with high (near 100%) transmittance based on a coupled double-layer grating system.
    Du S; Che Z; Zhao M; Liu W; Shi L
    Opt Lett; 2023 Apr; 48(7):1710-1713. PubMed ID: 37221747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures.
    Cao Y; Fu Y; Zhou Q; Xu Y; Gao L; Chen H
    Opt Express; 2019 Mar; 27(6):7857-7867. PubMed ID: 31052613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor.
    Han L; Pan J; Wu C; Li K; Ding H; Ji Q; Yang M; Wang J; Zhang H; Huang T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene.
    Zhao D; Ke S; Liu Q; Wang B; Lu P
    Opt Express; 2018 Feb; 26(3):2817-2828. PubMed ID: 29401817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.