These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36559415)

  • 1. Near- and far-field hydrodynamic interaction of two chiral squirmers.
    Maity R; Burada PS
    Phys Rev E; 2022 Nov; 106(5-1):054613. PubMed ID: 36559415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics of chiral squirmers.
    Burada PS; Maity R; Jülicher F
    Phys Rev E; 2022 Feb; 105(2-1):024603. PubMed ID: 35291102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability.
    Théry A; Maaß CC; Lauga E
    R Soc Open Sci; 2023 Jun; 10(6):230223. PubMed ID: 37388310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic interaction of microswimmers near a wall.
    Li GJ; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective behavior of squirmers in thin films.
    Wu-Zhang B; Fedosov DA; Gompper G
    Soft Matter; 2024 Jul; 20(29):5687-5702. PubMed ID: 38639062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers.
    Yoshinaga N; Liverpool TB
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):76. PubMed ID: 29926216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces.
    Kuron M; Stärk P; Holm C; de Graaf J
    Soft Matter; 2019 Jul; 15(29):5908-5920. PubMed ID: 31282522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent collective dynamics of bottom-heavy squirmers under gravity.
    Rühle F; Stark H
    Eur Phys J E Soft Matter; 2020 May; 43(5):26. PubMed ID: 32445113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lattice Boltzmann model for squirmers.
    Kuron M; Stärk P; Burkard C; de Graaf J; Holm C
    J Chem Phys; 2019 Apr; 150(14):144110. PubMed ID: 30981238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of a Dumbbell Micro-Swimmer.
    Ishikawa T
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase separation and coexistence of hydrodynamically interacting microswimmers.
    Blaschke J; Maurer M; Menon K; Zöttl A; Stark H
    Soft Matter; 2016 Dec; 12(48):9821-9831. PubMed ID: 27869284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gyrotactic cluster formation of bottom-heavy squirmers.
    Rühle F; Zantop AW; Stark H
    Eur Phys J E Soft Matter; 2022 Mar; 45(3):26. PubMed ID: 35304659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic Synchronization of Chiral Microswimmers.
    Samatas S; Lintuvuori J
    Phys Rev Lett; 2023 Jan; 130(2):024001. PubMed ID: 36706412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model.
    Shen Z; Würger A; Lintuvuori JS
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):39. PubMed ID: 29594924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axisymmetric spheroidal squirmers and self-diffusiophoretic particles.
    Pöhnl R; Popescu MN; Uspal WE
    J Phys Condens Matter; 2020 Apr; 32(16):164001. PubMed ID: 31801127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic Choreographies of Microswimmers.
    Mirzakhanloo M; Jalali MA; Alam MR
    Sci Rep; 2018 Feb; 8(1):3670. PubMed ID: 29487301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.