BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36559419)

  • 1. Pore-network extraction using discrete Morse theory: Preserving the topology of the pore space.
    Zubov AS; Murygin DA; Gerke KM
    Phys Rev E; 2022 Nov; 106(5-2):055304. PubMed ID: 36559419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric and Topological Analysis of Three-Dimensional Porous Media: Pore Space Partitioning Based on Morphological Skeletonization.
    Liang Z; Ioannidis MA; Chatzis I
    J Colloid Interface Sci; 2000 Jan; 221(1):13-24. PubMed ID: 10623448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media.
    Raeini AQ; Bijeljic B; Blunt MJ
    Phys Rev E; 2017 Jul; 96(1-1):013312. PubMed ID: 29347276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of pore network modeling for determination of two-phase transport in fibrous porous media.
    Huang X; Zhou W; Deng D
    Sci Rep; 2020 Nov; 10(1):20852. PubMed ID: 33257750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.
    Delgado-Friedrichs O; Robins V; Sheppard A
    IEEE Trans Pattern Anal Mach Intell; 2015 Mar; 37(3):654-66. PubMed ID: 26353267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent homology of unweighted complex networks via discrete Morse theory.
    Kannan H; Saucan E; Roy I; Samal A
    Sci Rep; 2019 Sep; 9(1):13817. PubMed ID: 31554857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved algorithm for estimating pore size distribution from pore space images of porous media.
    Song S; Ding Q; Wei J
    Phys Rev E; 2019 Nov; 100(5-1):053314. PubMed ID: 31869964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pore-scale investigation of a multiphase porous media system.
    Al-Raoush RI; Willson CS
    J Contam Hydrol; 2005 Mar; 77(1-2):67-89. PubMed ID: 15722173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized network modeling of capillary-dominated two-phase flow.
    Raeini AQ; Bijeljic B; Blunt MJ
    Phys Rev E; 2018 Feb; 97(2-1):023308. PubMed ID: 29548135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impacts of Surface Microchannels on the Transport Properties of Porous Fibrous Media Using Stochastic Pore Network Modeling.
    Huang X; Zhou W; Deng D; Liu B; Jiang K
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-network extraction from micro-computerized-tomography images.
    Dong H; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036307. PubMed ID: 19905212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation and uncertainty analysis of fluid-acoustic parameters of porous materials using microstructural properties.
    Lee HR; Yang SS; Lee JW; Kang YJ
    J Acoust Soc Am; 2020 Jul; 148(1):308. PubMed ID: 32752744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile and efficient pore network extraction method using marker-based watershed segmentation.
    Gostick JT
    Phys Rev E; 2017 Aug; 96(2-1):023307. PubMed ID: 28950550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on Three-Dimensional Void Mesostructures and Geometries in Porous Asphalt Mixture Based on Computed Tomography (CT) Images and Avizo.
    Jing H; Dan H; Shan H; Liu X
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petrographic characterization to build an accurate rock model using micro-CT: Case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation.
    Munawar MJ; Lin C; Cnudde V; Bultreys T; Dong C; Zhang X; De Boever W; Zahid MA; Wu Y
    Micron; 2018 Jun; 109():22-33. PubMed ID: 29614427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore space extraction and characterization of sack paper using μ-CT.
    Machado Charry E; Neumann M; Lahti J; Schennach R; Schmidt V; Zojer K
    J Microsc; 2018 Oct; 272(1):35-46. PubMed ID: 29984831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.