These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Low-dissipation engines: Microscopic construction via shortcuts to adiabaticity and isothermality, the optimal relation between power and efficiency. Zhao XH; Gong ZN; Tu ZC Phys Rev E; 2022 Dec; 106(6-1):064117. PubMed ID: 36671114 [TBL] [Abstract][Full Text] [Related]
3. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Qi C; Ding Z; Chen L; Ge Y; Feng H Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398 [TBL] [Abstract][Full Text] [Related]
4. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Chen YH; Chen JF; Fei Z; Quan HT Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948 [TBL] [Abstract][Full Text] [Related]
5. Shortcuts to isothermality and nonequilibrium work relations. Li G; Quan HT; Tu ZC Phys Rev E; 2017 Jul; 96(1-1):012144. PubMed ID: 29347103 [TBL] [Abstract][Full Text] [Related]
6. Optimal Time-Entropy Bounds and Speed Limits for Brownian Thermal Shortcuts. Pires LB; Goerlich R; da Fonseca AL; Debiossac M; Hervieux PA; Manfredi G; Genet C Phys Rev Lett; 2023 Sep; 131(9):097101. PubMed ID: 37721846 [TBL] [Abstract][Full Text] [Related]
7. Cycling Tames Power Fluctuations near Optimum Efficiency. Holubec V; Ryabov A Phys Rev Lett; 2018 Sep; 121(12):120601. PubMed ID: 30296120 [TBL] [Abstract][Full Text] [Related]
8. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. Frim AG; DeWeese MR Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204 [TBL] [Abstract][Full Text] [Related]
11. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
13. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source. Izumida Y; Okuda K Phys Rev Lett; 2014 May; 112(18):180603. PubMed ID: 24856684 [TBL] [Abstract][Full Text] [Related]
14. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487 [TBL] [Abstract][Full Text] [Related]
15. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model. Park JM; Chun HM; Noh JD Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096 [TBL] [Abstract][Full Text] [Related]
16. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Zhang R; Li QW; Tang FR; Yang XQ; Bai L Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616 [TBL] [Abstract][Full Text] [Related]
17. Quantum dynamical framework for Brownian heat engines. Agarwal GS; Chaturvedi S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437 [TBL] [Abstract][Full Text] [Related]
18. Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions. Krishnamurthy S; Ganapathy R; Sood AK Nat Commun; 2023 Oct; 14(1):6842. PubMed ID: 37891165 [TBL] [Abstract][Full Text] [Related]
19. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
20. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]