These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36559489)

  • 1. Spontaneous separation and evaporation mechanism of self-rewetting fluid droplets on chemically stripe-patterned surfaces: A lattice Boltzmann study.
    Yu Y; Yin Z; Li Q; Tang S
    Phys Rev E; 2022 Nov; 106(5-2):055104. PubMed ID: 36559489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinning-Depinning Mechanism of the Contact Line during Evaporation on Chemically Patterned Surfaces: A Lattice Boltzmann Study.
    Li Q; Zhou P; Yan HJ
    Langmuir; 2016 Sep; 32(37):9389-96. PubMed ID: 27579557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid Flow and Thin-Film Evolution near the Triple Line during Droplet Evaporation of Self-Rewetting Fluids.
    Yang Y; Zhou L; Du X; Yang Y
    Langmuir; 2018 Apr; 34(13):3853-3863. PubMed ID: 29513537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice-Boltzmann simulations of droplet evaporation.
    Ledesma-Aguilar R; Vella D; Yeomans JM
    Soft Matter; 2014 Nov; 10(41):8267-75. PubMed ID: 25186667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of Evaporating Droplets on Chemically Patterned Surfaces.
    Hartmann M; Hardt S
    Langmuir; 2019 Apr; 35(14):4868-4875. PubMed ID: 30876340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape of picoliter droplets on chemically striped patterned substrates.
    Jansen HP; Sotthewes K; Ganser C; Zandvliet HJ; Teichert C; Kooij ES
    Langmuir; 2014 Oct; 30(39):11574-81. PubMed ID: 25198584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling of anisotropic droplet shapes on chemically stripe-patterned surfaces.
    Bliznyuk O; Vereshchagina E; Kooij ES; Poelsema B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041601. PubMed ID: 19518239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Equilibrium Droplet Shapes on Chemically Striped Patterned Surfaces Using Phase-Field Method.
    Wu Y; Wang F; Selzer M; Nestler B
    Langmuir; 2019 Jun; 35(25):8500-8516. PubMed ID: 31149828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating anisotropic droplet shapes on chemically striped patterned surfaces.
    Jansen HP; Bliznyuk O; Kooij ES; Poelsema B; Zandvliet HJ
    Langmuir; 2012 Jan; 28(1):499-505. PubMed ID: 22073966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Evaporation and Particle Assembly in Colloidal Droplets.
    Zhao M; Yong X
    Langmuir; 2017 Jun; 33(23):5734-5744. PubMed ID: 28548503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart design of stripe-patterned gradient surfaces to control droplet motion.
    Bliznyuk O; Jansen HP; Kooij ES; Zandvliet HJ; Poelsema B
    Langmuir; 2011 Sep; 27(17):11238-45. PubMed ID: 21780836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Boltzmann modeling of directional wetting: comparing simulations to experiments.
    Jansen HP; Sotthewes K; van Swigchem J; Zandvliet HJ; Kooij ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013008. PubMed ID: 23944550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting and Spreading Behavior of Axisymmetric Compound Droplets on Curved Solid Walls Using Conservative Phase Field Lattice Boltzmann Method.
    Wang Y; Huang JJ
    Entropy (Basel); 2024 Feb; 26(2):. PubMed ID: 38392427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporative gold nanorod assembly on chemically stripe-patterned gradient surfaces.
    Ahmad I; Jansen HP; van Swigchem J; Ganser C; Teichert C; Zandvliet HJ; Kooij ES
    J Colloid Interface Sci; 2015 Jul; 449():261-9. PubMed ID: 25591822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann study of chemically-driven self-propelled droplets.
    Fadda F; Gonnella G; Lamura A; Tiribocchi A
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaporation of Sessile Water Droplets on Horizontal and Vertical Biphobic Patterned Surfaces.
    Qi W; Li J; Weisensee PB
    Langmuir; 2019 Dec; 35(52):17185-17192. PubMed ID: 31809043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.
    Dash S; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042402. PubMed ID: 24827255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and Theoretical Investigation of Droplet Evaporation on Heated Hydrophilic and Hydrophobic Surfaces.
    Kadhim MA; Kapur N; Summers JL; Thompson H
    Langmuir; 2019 May; 35(19):6256-6266. PubMed ID: 30990692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial spreading kinetics of high-viscosity droplets on anisotropic surfaces.
    Bliznyuk O; Jansen HP; Kooij ES; Poelsema B
    Langmuir; 2010 May; 26(9):6328-34. PubMed ID: 20334395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.