These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36559514)

  • 1. Impurity reveals distinct operational phases in quantum thermodynamic cycles.
    Prakash A; Kumar A; Benjamin C
    Phys Rev E; 2022 Nov; 106(5-1):054112. PubMed ID: 36559514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S
    Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S; Saha M; Venkatesh BP; Agarwalla BK
    Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V; Singh S; Abah O; Müstecaplıoğlu ÖE
    Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum thermodynamic cycles and quantum heat engines.
    Quan HT; Liu YX; Sun CP; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y; Li K; He J; Wang J
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics.
    Johal RS; Mehta V
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a quantum heat engine at strong reservoir coupling.
    Newman D; Mintert F; Nazir A
    Phys Rev E; 2017 Mar; 95(3-1):032139. PubMed ID: 28415330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal quantum Otto heat machine based on the Dicke model.
    Xu HG; Jin J; Neto GDM; de Almeida NG
    Phys Rev E; 2024 Jan; 109(1-1):014122. PubMed ID: 38366433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal performance of a three-level quantum refrigerator.
    Singh V; Pandit T; Johal RS
    Phys Rev E; 2020 Jun; 101(6-1):062121. PubMed ID: 32688608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Otto-type heat engine with fixed frequency.
    Matos RQ; de Assis RJ; de Almeida NG
    Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of Harmonic Quantum Otto Engines at Maximal Power.
    Deffner S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strongly coupled quantum Otto cycle with single qubit bath.
    Chakraborty S; Das A; Chruściński D
    Phys Rev E; 2022 Dec; 106(6-1):064133. PubMed ID: 36671160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.