These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36559710)

  • 1. Regeneration of Osteochondral Defects by Combined Delivery of Synovium-Derived Mesenchymal Stem Cells, TGF-β1 and BMP-4 in Heparin-Conjugated Fibrin Hydrogel.
    Sarsenova M; Raimagambetov Y; Issabekova A; Karzhauov M; Kudaibergen G; Akhmetkarimova Z; Batpen A; Ramankulov Y; Ogay V
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model.
    Guo X; Park H; Young S; Kretlow JD; van den Beucken JJ; Baggett LS; Tabata Y; Kasper FK; Mikos AG; Jansen JA
    Acta Biomater; 2010 Jan; 6(1):39-47. PubMed ID: 19660580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2.
    Li Y; Liu Y; Guo Q
    Arthritis Res Ther; 2021 Feb; 23(1):50. PubMed ID: 33531052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytomodulin-10 modified GelMA hydrogel with kartogenin for in-situ osteochondral regeneration.
    Liu G; Guo Q; Liu C; Bai J; Wang H; Li J; Liu D; Yu Q; Shi J; Liu C; Zhu C; Li B; Zhang H
    Acta Biomater; 2023 Oct; 169():317-333. PubMed ID: 37586447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits.
    Gugjoo MB; Amarpal ; Abdelbaset-Ismail A; Aithal HP; Kinjavdekar P; Pawde AM; Kumar GS; Sharma GT
    Biomed Pharmacother; 2017 Sep; 93():1165-1174. PubMed ID: 28738525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-β1 and BMP-2 for regeneration of cartilage-bone interface.
    Han F; Zhou F; Yang X; Zhao J; Zhao Y; Yuan X
    J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1344-53. PubMed ID: 25385571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of Rat Calvarial Critical-Sized Defects Using Heparin-Conjugated Fibrin Hydrogel Containing BMP-2 and Adipose-Derived Pericytes.
    Kudaibergen G; Mukhlis S; Mukhambetova A; Issabekova A; Sekenova A; Sarsenova M; Temirzhan A; Baidarbekov M; Umbayev B; Ogay V
    Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.
    Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S
    J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair.
    Lu S; Lam J; Trachtenberg JE; Lee EJ; Seyednejad H; van den Beucken JJJP; Tabata Y; Wong ME; Jansen JA; Mikos AG; Kasper FK
    Biomaterials; 2014 Oct; 35(31):8829-8839. PubMed ID: 25047629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.
    Yang HS; La WG; Bhang SH; Kim HJ; Im GI; Lee H; Park JH; Kim BS
    Tissue Eng Part A; 2011 Jul; 17(13-14):1809-18. PubMed ID: 21366427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells.
    Zhang K; He S; Yan S; Li G; Zhang D; Cui L; Yin J
    J Mater Chem B; 2016 Apr; 4(15):2628-2645. PubMed ID: 32263287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model.
    Lee JM; Kim BS; Lee H; Im GI
    Mol Ther; 2012 Jul; 20(7):1434-42. PubMed ID: 22491215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-articular delivery of synovium-resident mesenchymal stem cells via BMP-7-loaded fibrous PLGA scaffolds for cartilage repair.
    Kim HJ; Han MA; Shin JY; Jeon JH; Lee SJ; Yoon MY; Kim HJ; Choi EJ; Do SH; Yang VC; He H; Yang YI
    J Control Release; 2019 May; 302():169-180. PubMed ID: 30954618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system.
    Re'em T; Witte F; Willbold E; Ruvinov E; Cohen S
    Acta Biomater; 2012 Sep; 8(9):3283-93. PubMed ID: 22617742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects.
    Cho H; Kim J; Kim S; Jung YC; Wang Y; Kang BJ; Kim K
    J Control Release; 2020 Nov; 327():284-295. PubMed ID: 32763434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.
    Mendes LF; Katagiri H; Tam WL; Chai YC; Geris L; Roberts SJ; Luyten FP
    Stem Cell Res Ther; 2018 Feb; 9(1):42. PubMed ID: 29467016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model.
    Kim K; Lam J; Lu S; Spicer PP; Lueckgen A; Tabata Y; Wong ME; Jansen JA; Mikos AG; Kasper FK
    J Control Release; 2013 Jun; 168(2):166-78. PubMed ID: 23541928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CaAlg hydrogel containing bone morphogenetic protein 4-enhanced adipose-derived stem cells combined with osteochondral mosaicplasty facilitated the repair of large osteochondral defects.
    Chen L; Shi Y; Zhang X; Hu X; Shao Z; Dai L; Ju X; Ao Y; Wang J
    Knee Surg Sports Traumatol Arthrosc; 2019 Nov; 27(11):3668-3678. PubMed ID: 30923857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis.
    Levinson C; Lee M; Applegate LA; Zenobi-Wong M
    Acta Biomater; 2019 Nov; 99():168-180. PubMed ID: 31536840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds.
    Chen J; Chen H; Li P; Diao H; Zhu S; Dong L; Wang R; Guo T; Zhao J; Zhang J
    Biomaterials; 2011 Jul; 32(21):4793-805. PubMed ID: 21489619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.