These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36559710)
21. Development of CaCO Gong Y; Zhang Y; Cao Z; Ye F; Lin Z; Li Y Biomater Sci; 2019 Aug; 7(9):3614-3626. PubMed ID: 31210206 [TBL] [Abstract][Full Text] [Related]
22. A biphasic, demineralized, and Decellularized allograft bone-hydrogel scaffold with a cell-based BMP-7 delivery system for osteochondral defect regeneration. Sun J; Lyu J; Xing F; Chen R; Duan X; Xiang Z J Biomed Mater Res A; 2020 Sep; 108(9):1909-1921. PubMed ID: 32323455 [TBL] [Abstract][Full Text] [Related]
23. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)-b-poly(L-lysine)/TGF-β1 plasmid DNA complexes for cartilage restoration in vivo. Li B; Yang J; Ma L; Li F; Tu Z; Gao C J Biomed Mater Res A; 2013 Nov; 101(11):3097-108. PubMed ID: 23529956 [TBL] [Abstract][Full Text] [Related]
25. A dual delivery of substance P and bone morphogenetic protein-2 for mesenchymal stem cell recruitment and bone regeneration. Noh SS; Bhang SH; La WG; Lee S; Shin JY; Ma YJ; Jang HK; Kang S; Jin M; Park J; Kim BS Tissue Eng Part A; 2015 Apr; 21(7-8):1275-87. PubMed ID: 25517212 [TBL] [Abstract][Full Text] [Related]
26. TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. Kim J; Lin B; Kim S; Choi B; Evseenko D; Lee M J Biol Eng; 2015; 9():1. PubMed ID: 25745515 [TBL] [Abstract][Full Text] [Related]
27. Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. Behrendt P; Ladner Y; Stoddart MJ; Lippross S; Alini M; Eglin D; Armiento AR Am J Sports Med; 2020 Jan; 48(1):210-221. PubMed ID: 31877102 [TBL] [Abstract][Full Text] [Related]
29. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Wu Y; Yang Z; Denslin V; Ren X; Lee CS; Yap FL; Lee EH Am J Sports Med; 2020 Jun; 48(7):1735-1747. PubMed ID: 32191492 [TBL] [Abstract][Full Text] [Related]
30. Repair of a Meniscal Defect in a Rabbit Model Through Use of a Thermosensitive, Injectable, In Situ Crosslinked Hydrogel With Encapsulated Bone Mesenchymal Stromal Cells and Transforming Growth Factor β1. Chen C; Song J; Qiu J; Zhao J Am J Sports Med; 2020 Mar; 48(4):884-894. PubMed ID: 31967854 [TBL] [Abstract][Full Text] [Related]
31. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model. Ha CW; Park YB; Chung JY; Park YG Stem Cells Transl Med; 2015 Sep; 4(9):1044-51. PubMed ID: 26240434 [TBL] [Abstract][Full Text] [Related]
32. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Guo X; Zheng Q; Yang S; Shao Z; Yuan Q; Pan Z; Tang S; Liu K; Quan D Biomed Mater; 2006 Dec; 1(4):206-15. PubMed ID: 18458408 [TBL] [Abstract][Full Text] [Related]
33. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Lee YH; Wu HC; Yeh CW; Kuan CH; Liao HT; Hsu HC; Tsai JC; Sun JS; Wang TW Acta Biomater; 2017 Nov; 63():210-226. PubMed ID: 28899816 [TBL] [Abstract][Full Text] [Related]
34. Local BMP-7 release from a PLGA scaffolding-matrix for the repair of osteochondral defects in rabbits. Jung MR; Shim IK; Chung HJ; Lee HR; Park YJ; Lee MC; Yang YI; Do SH; Lee SJ J Control Release; 2012 Sep; 162(3):485-91. PubMed ID: 22902517 [TBL] [Abstract][Full Text] [Related]
35. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
36. A Slotted Decellularized Osteochondral Scaffold With Layer-Specific Release of Stem Cell Differentiation Stimulators Enhances Cartilage and Bone Regeneration in Osteochondral Defects in a Rabbit Model. Deng Z; Zhu W; Lu B; Li M; Xu D Am J Sports Med; 2022 Oct; 50(12):3390-3405. PubMed ID: 36122351 [TBL] [Abstract][Full Text] [Related]
37. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. Wang X; Song X; Li T; Chen J; Cheng G; Yang L; Chen C Am J Sports Med; 2019 Aug; 47(10):2316-2326. PubMed ID: 31233332 [TBL] [Abstract][Full Text] [Related]
38. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452 [TBL] [Abstract][Full Text] [Related]
39. Comparative, osteochondral defect repair: stem cells versus chondrocytes versus bone morphogenetic protein-2, solely or in combination. Reyes R; Pec MK; Sánchez E; del Rosario C; Delgado A; Évora C Eur Cell Mater; 2013 Jul; 25():351-65; discussion 365. PubMed ID: 23832688 [TBL] [Abstract][Full Text] [Related]
40. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model. Jia Z; Zhu F; Li X; Liang Q; Zhuo Z; Huang J; Duan L; Xiong J; Wang D Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():541-551. PubMed ID: 30889728 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]