BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36559768)

  • 1. The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability.
    Czakaj A; Chatzigiannakis E; Vermant J; Krzan M; Warszyński P
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Apr; 16(16):3981-3990. PubMed ID: 32250379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobisation of Silica Nanoparticles Using Lauroyl Ethyl Arginate and Chitosan Mixtures to Induce the Foaming Process.
    Krzan M; Jarek E; Petkova H; Santini E; Szyk-Warszynska L; Ravera F; Liggieri L; Mileva E; Warszynski P
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals.
    Bai L; Xiang W; Huan S; Rojas OJ
    Biomacromolecules; 2018 May; 19(5):1674-1685. PubMed ID: 29608856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethyl Lauroyl Arginate, an Inherently Multicomponent Surfactant System.
    Czakaj A; Jarek E; Krzan M; Warszyński P
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation and stabilization of high internal phase emulsions via mechanical cellulose nanofibrils/ethyl lauroyl arginate complexes.
    Huang L; Xu C; Gao W; Rojas OJ; Jiao W; Guo S; Li J
    Carbohydr Polym; 2024 Jan; 324():121541. PubMed ID: 37985062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate.
    Angkuratipakorn T; Chung C; Koo CKW; Mundo JLM; McClements DJ; Decker EA; Singkhonrat J
    Food Chem; 2020 Oct; 327():127039. PubMed ID: 32454273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial properties, thin film stability and foam stability of casein micelle dispersions.
    Chen M; Sala G; Meinders MB; van Valenberg HJ; van der Linden E; Sagis LM
    Colloids Surf B Biointerfaces; 2017 Jan; 149():56-63. PubMed ID: 27721166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystalline nanocellulose/lauric arginate complexes.
    Chi K; Catchmark JM
    Carbohydr Polym; 2017 Nov; 175():320-329. PubMed ID: 28917872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex coacervation of food grade antimicrobial lauric arginate with lambda carrageenan.
    Nallamilli T; Ketomaeki M; Prozeller D; Mars J; Morsbach S; Mezger M; Vilgis T
    Curr Res Food Sci; 2021; 4():53-62. PubMed ID: 33665619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confined Shear Alignment of Ultrathin Films of Cellulose Nanocrystals.
    Jinkins KR; Wang J; Dwyer JH; Wang X; Arnold MS
    ACS Appl Bio Mater; 2021 Nov; 4(11):7961-7966. PubMed ID: 35006777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of starch/PVA antimicrobial active films with controlled release property by utilizing electrostatic interactions between nanocellulose and lauroyl arginate ethyl ester.
    Qiao J; Dong Y; Chen C; Xie J
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129415. PubMed ID: 38224809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electrical and thermal properties of semi-conductive PANI-CNCs with surface modified CNCs.
    Chen PY; Hsu C; Venkatesan M; Tseng YL; Cho CJ; Han ST; Zhou Y; Chiang WH; Kuo CC
    RSC Adv; 2021 Mar; 11(19):11444-11456. PubMed ID: 35423653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in foam collapse and thin film stability with constant interfacial and bulk properties.
    Wierenga PA; Basheva ES; Delahaije RJBM
    Adv Colloid Interface Sci; 2023 Feb; 312():102845. PubMed ID: 36709573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waste Orange Peels as a Source of Cellulose Nanocrystals and Their Use for the Development of Nanocomposite Films.
    Bigi F; Maurizzi E; Haghighi H; Siesler HW; Licciardello F; Pulvirenti A
    Foods; 2023 Feb; 12(5):. PubMed ID: 36900477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air-Water Interface.
    Bertsch P; Fischer P
    Langmuir; 2019 Jun; 35(24):7937-7943. PubMed ID: 31090427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial Films Made of Ionic Complexes of Poly(γ-glutamic acid) and Ethyl Lauroyl Arginate.
    Gamarra-Montes A; Missagia B; Morató J; Muñoz-Guerra S
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction: Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Jun; 16(21):5094. PubMed ID: 32432604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oppositely charged surfactants and nanoparticles at the air-water interface: Influence of surfactant to nanoparticle ratio.
    Eftekhari M; Schwarzenberger K; Karakashev SI; Grozev NA; Eckert K
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1388-1401. PubMed ID: 37801849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.