These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36559938)

  • 1. Transient Response of Miniature Piezoresistive Pressure Sensor Dedicated to Blast Wave Monitoring.
    Sanchez K; Achour B; Coustou A; Lecestre A; Charlot S; Lavayssière M; Lefrançois A; Aubert H; Pons P
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Filtering on Experimental Blast Overpressure Measurements.
    Alphonse VD; Kemper AR; Duma SM
    Biomed Sci Instrum; 2015; 51():143-50. PubMed ID: 25996711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on Intracranial Pressure and Biomechanical Response in Rats Under the Blast Wave.
    Huang X; Xia B; Chang L; Liao Z; Zhao H; Zhang L; Cai Z
    J Neurotrauma; 2024 Mar; 41(5-6):671-684. PubMed ID: 35906796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency Bandwidth of Pressure Sensors Dedicated to Blast Experiments.
    Chalnot M; Pons P; Aubert H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor orientation and other factors which increase the blast overpressure reporting errors.
    Misistia A; Skotak M; Cardenas A; Alay E; Chandra N; Kamimori GH
    PLoS One; 2020; 15(10):e0240262. PubMed ID: 33031423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost rapid miniature optical pressure sensors for blast wave measurements.
    Wu N; Wang W; Tian Y; Zou X; Maffeo M; Niezrecki C; Chen J; Wang X
    Opt Express; 2011 May; 19(11):10797-804. PubMed ID: 21643336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporally and Spatially Resolved Reflected Overpressure Measurements in the Extreme Near Field.
    Barr AD; Rigby SE; Clarke SD; Farrimond D; Tyas A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement.
    Zhang G; Zhao Y; Zhao Y; Wang X; Wei X; Ren W; Li H; Zhao Y
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29494519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Accurate Determination of Shock Wave Time-Pressure Profile in the Experimental Models of Blast-Induced Neurotrauma.
    Skotak M; Alay E; Chandra N
    Front Neurol; 2018; 9():52. PubMed ID: 29467718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure.
    Jiang S; Smith K; Gan RZ
    Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research of a Novel Ultra-High Pressure Sensor with High-Temperature Resistance.
    Zhang GD; Zhao YL; Zhao Y; Wang XC; Wei XY
    Micromachines (Basel); 2017 Dec; 9(1):. PubMed ID: 30393281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of an open-ended shock tube for the study of blast mtbi.
    Shah Ms AS; Stemper Phd BD; Pintar Phd FA
    Biomed Sci Instrum; 2012; 48():393-400. PubMed ID: 22846311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Fast-Running Algorithm to Approximate Incident Blast Parameters Using Body-Mounted Sensor Measurements.
    Wiri S; Needham C; Ortley D; Duckworth J; Gonzales A; Walilko T; Bentley TB
    Mil Med; 2022 Oct; 187(11-12):e1354-e1362. PubMed ID: 34626472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor.
    Meng X; Zhao Y
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27005627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A miniaturized piezoresistive flow sensor for real-time monitoring of intravenous infusion.
    Hagihghi R; Razmjou A; Orooji Y; Warkiani ME; Asadnia M
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):568-576. PubMed ID: 31106527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency Characteristics of Pulse Wave Sensor Using MEMS Piezoresistive Cantilever Element.
    Nabeshima T; Nguyen TV; Takahashi H
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEMS-Based Pulse Wave Sensor Utilizing a Piezoresistive Cantilever.
    Nguyen TV; Mizuki Y; Tsukagoshi T; Takahata T; Ichiki M; Shimoyama I
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane characteristics for biological blast overpressure testing using blast simulators.
    Alphonse VD; Siva Sai Sujith Sajja V; Kemper AR; Rizel DV; Duma SM; VandeVord PJ
    Biomed Sci Instrum; 2014; 50():248-53. PubMed ID: 25405432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.
    Niu Z; Zhao Y; Tian B
    Rev Sci Instrum; 2014 Jan; 85(1):015001. PubMed ID: 24517800
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.