These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36559962)

  • 1. Self-Powered Long-Life Microsystem for Vibration Sensing and Target Recognition.
    Yang D; Duan W; Xuan G; Hou L; Zhang Z; Song M; Zhao J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Microsystem for Sound Event Recognition in Edge Computing Using End-to-End Mesh Networking.
    Hou L; Duan W; Xuan G; Xiao S; Li Y; Li Y; Zhao J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic Wake-Up Technology for Microsystems: A Review.
    Yang D; Zhao J
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar Energy Harvesting to Improve Capabilities of Wearable Devices.
    Páez-Montoro A; García-Valderas M; Olías-Ruíz E; López-Ongil C
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first batteryless, solar-powered cardiac pacemaker.
    Haeberlin A; Zurbuchen A; Walpen S; Schaerer J; Niederhauser T; Huber C; Tanner H; Servatius H; Seiler J; Haeberlin H; Fuhrer J; Vogel R
    Heart Rhythm; 2015 Jun; 12(6):1317-23. PubMed ID: 25744612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successful pacing using a batteryless sunlight-powered pacemaker.
    Haeberlin A; Zurbuchen A; Schaerer J; Wagner J; Walpen S; Huber C; Haeberlin H; Fuhrer J; Vogel R
    Europace; 2014 Oct; 16(10):1534-9. PubMed ID: 24916431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Cubic-Designed Piezoelectric Node (iCUPE) with Simultaneous Sensing and Energy Harvesting Ability toward Self-Sustained Artificial Intelligence of Things (AIoT).
    Huang M; Zhu M; Feng X; Zhang Z; Tang T; Guo X; Chen T; Liu H; Sun L; Lee C
    ACS Nano; 2023 Apr; 17(7):6435-6451. PubMed ID: 36939563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Powered Self-Contained Wireless Vibration Synchronous Sensor for Fault Detection.
    Aldawood G; Bardaweel H
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research and Development of a Wireless Self-Powered Sensing Device Based on Bridge Vibration Energy Collection.
    Tong X; Hou Y; Dong Y; Zhang Y; Yang H; Qian Z
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities.
    Izadgoshasb I
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
    Osorio de la Rosa E; Vázquez Castillo J; Carmona Campos M; Barbosa Pool GR; Becerra Nuñez G; Castillo Atoche A; Ortegón Aguilar J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a 900 MHz Dual-Mode SWIPT for Low-Power IoT Devices.
    Abbasizadeh H; Kim SY; Samadpoor Rikan B; Hejazi A; Khan D; Pu YG; Hwang KC; Yang Y; Kim DI; Lee KY
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing IoT Sensing System for Construction-Induced Vibration Monitoring and Impact Assessment.
    Meng Q; Zhu S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics.
    Wang X; Niu S; Yi F; Yin Y; Hao C; Dai K; Zhang Y; You Z; Wang ZL
    ACS Nano; 2017 Feb; 11(2):1728-1735. PubMed ID: 28094509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance flexible energy storage and harvesting system for wearable electronics.
    Ostfeld AE; Gaikwad AM; Khan Y; Arias AC
    Sci Rep; 2016 May; 6():26122. PubMed ID: 27184194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powering the Environmental Internet of Things.
    Curry J; Harris N
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary Evaluation of a Solar-Powered Wristband for Continuous Multi-Modal Electrochemical Monitoring.
    Songkakul T; Peterson K; Daniele M; Bozkurt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7316-7319. PubMed ID: 34892787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Powered Sensing for Smart Agriculture by Electromagnetic-Triboelectric Hybrid Generator.
    Zhang B; Zhang S; Li W; Gao Q; Zhao D; Wang ZL; Cheng T
    ACS Nano; 2021 Dec; 15(12):20278-20286. PubMed ID: 34841851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh-Density 256-Channel Neural Sensing Microsystem Using TSV-Embedded Neural Probes.
    Huang YC; Huang PT; Wu SL; Hu YC; You YH; Chen JM; Huang YY; Chang HC; Lin YH; Duann JR; Chiu TW; Hwang W; Chen KN; Chuang CT; Chiou JC
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1013-1025. PubMed ID: 28371785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.