These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36559972)

  • 41. A Needs Learning Algorithm Applied to Stable Gait Generation of Quadruped Robot.
    Zhang H; Yin J; Wang H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sprawling Quadruped Robot Driven by Decentralized Control With Cross-Coupled Sensory Feedback Between Legs and Trunk.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Front Neurorobot; 2020; 14():607455. PubMed ID: 33488377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Minimalist analogue robot discovers animal-like walking gaits.
    Smith BJH; Usherwood JR
    Bioinspir Biomim; 2020 Feb; 15(2):026004. PubMed ID: 31869827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.
    Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG
    Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic Modeling, Analysis, and Design Synthesis of a Reduced Complexity Quadruped with a Serpentine Robotic Tail.
    Liu Y; Ben-Tzvi P
    Integr Comp Biol; 2021 Sep; 61(2):464-477. PubMed ID: 33999186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stability Study and Simulation of Quadruped Robots with Variable Parameters.
    Cong Q; Shi X; Wang J; Xiong Y; Su B; Xu W; Liu H; Zhou K; Jiang L; Tian W
    Appl Bionics Biomech; 2022; 2022():9968042. PubMed ID: 35096142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quadrupedal Robot Locomotion: A Biologically Inspired Approach and Its Hardware Implementation.
    Espinal A; Rostro-Gonzalez H; Carpio M; Guerra-Hernandez EI; Ornelas-Rodriguez M; Puga-Soberanes HJ; Sotelo-Figueroa MA; Melin P
    Comput Intell Neurosci; 2016; 2016():5615618. PubMed ID: 27436997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of topology optimized compliant legs for bio-inspired quadruped robots.
    Sun Y; Zong C; Pancheri F; Chen T; Lueth TC
    Sci Rep; 2023 Mar; 13(1):4875. PubMed ID: 36966220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.
    Calisti M; Corucci F; Arienti A; Laschi C
    Bioinspir Biomim; 2015 Jul; 10(4):046012. PubMed ID: 26226238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A bio-inspired robotic climbing robot to understand kinematic and morphological determinants for an optimal climbing gait.
    Beck HK; Schultz JT; Clemente CJ
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34740206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and Research of All-Terrain Wheel-Legged Robot.
    Zhao J; Han T; Wang S; Liu C; Fang J; Liu S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biologically inspired adaptive walking of a quadruped robot.
    Kimura H; Fukuoka Y; Cohen AH
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):153-70. PubMed ID: 17148054
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-charged Pneumatic Soft Actuators with Highly Flexible Trunk.
    Li Y; Ren T; Li Y; Liu Q; Chen Y
    Soft Robot; 2021 Feb; 8(1):97-108. PubMed ID: 32522089
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of Kinematic Characteristics of Saanen Goat Spine under Multi-Slope.
    Zhang F; Cui X; Wang S; Sun H; Wang J; Wang X; Fu S; Guo Z
    Biomimetics (Basel); 2022 Oct; 7(4):. PubMed ID: 36412709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
    Spagna JC; Goldman DI; Lin PC; Koditschek DE; Full RJ
    Bioinspir Biomim; 2007 Mar; 2(1):9-18. PubMed ID: 17671322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bio-inspired step-climbing in a hexapod robot.
    Chou YC; Yu WS; Huang KJ; Lin PC
    Bioinspir Biomim; 2012 Sep; 7(3):036008. PubMed ID: 22549014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Navigating a mobile robot by a traversability field histogram.
    Ye C
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):361-72. PubMed ID: 17416164
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 60. Extension and customization of self-stability control in compliant legged systems.
    Ernst M; Geyer H; Blickhan R
    Bioinspir Biomim; 2012 Dec; 7(4):046002. PubMed ID: 22791685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.