These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36559974)

  • 21. Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers.
    Ardalan S; Hosseinifard M; Vosough M; Golmohammadi H
    Biosens Bioelectron; 2020 Nov; 168():112450. PubMed ID: 32877780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Temperature Monitoring under Thermal Cycling Loading with Optical Fiber Sensor.
    Her SC; Tasi JL
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A biomimetic orthogonal flow sensor based on an asymmetric optical fiber sensory structure for marine sensing.
    Wang Y; Song M; Fu X
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38306671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time optical fiber sensors based on light diffusing microlens arrays.
    Elsherif M; Moreddu R; Hassan MU; Yetisen AK; Butt H
    Lab Chip; 2019 Jun; 19(12):2060-2070. PubMed ID: 31114826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
    Khan MR; Kang SW
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive Fiber-Ring Lasers Based on Isopropanol Filled Microfiber Coupler for High-Sensitivity Temperature Sensing.
    Lin W; Hu J; Zhao F; Sun S; Liu Y; Liu S; Yu F; Mak PU; Pun SH; Shum PP; Vai MI; Shao L
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reusable smartphone-facilitated mobile fluorescence biosensor for rapid and sensitive on-site quantitative detection of trace pollutants.
    Cheng Y; Wang H; Zhuo Y; Song D; Li C; Zhu A; Long F
    Biosens Bioelectron; 2022 Mar; 199():113863. PubMed ID: 34894557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Portable smartphone platform integrated with paper strip-assisted fluorescence sensor for ultrasensitive and visual quantitation of ascorbic acid.
    Li C; Xu X; Wang F; Zhao Y; Shi Y; Zhao X; Liu J
    Food Chem; 2023 Feb; 402():134222. PubMed ID: 36130432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater.
    Buerck J; Roth S; Kraemer K; Scholz M; Klaas N
    J Hazard Mater; 2001 May; 83(1-2):11-28. PubMed ID: 11267742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensor Based on Molecularly Imprinted Polymer Membranes and Smartphone for Detection of
    Sergeyeva T; Yarynka D; Dubey L; Dubey I; Piletska E; Linnik R; Antonyuk M; Ternovska T; Brovko O; Piletsky S; El'skaya A
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32752255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-board smartphone micromotor-based fluorescence assays.
    Yuan K; de la Asunción-Nadal V; Cuntín-Abal C; Jurado-Sánchez B; Escarpa A
    Lab Chip; 2022 Mar; 22(5):928-935. PubMed ID: 34994753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing.
    Li C; Liu Y; Lang C; Zhang Y; Qu S
    Lab Chip; 2022 Sep; 22(19):3734-3743. PubMed ID: 36039614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water.
    Pham TB; Bui H; Le HT; Pham VH
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28025512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance temperature and pressure dual-parameter sensor based on a polymer-coated tapered optical fiber.
    Lu J; Yu Y; Qin S; Li M; Bian Q; Lu Y; Hu X; Yang J; Meng Z; Zhang Z
    Opt Express; 2022 Mar; 30(6):9714-9726. PubMed ID: 35299391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical time-of-flight chemical detection: absorption-modulated fluorescence for spatially resolved analyte mapping in a bidirectional distributed fiber-optic sensor.
    Potyrailo RA; Hieftje GM
    Anal Chem; 1998 Aug; 70(16):3407-12. PubMed ID: 9726165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogen-doped carbon dots coupled with morin-Al
    Hao Y; Dong W; Liu Y; Wen X; Shuang S; Hu Q; Dong C; Gong X
    J Hazard Mater; 2022 Oct; 439():129596. PubMed ID: 35863221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new Fe
    Aribuga H; Ertugral U; Alcay Y; Yavuz O; Yildirim MS; Ozdemir E; Kaya K; Sert ABO; Kok FN; Tuzun NŞ; Yilmaz I
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122060. PubMed ID: 36395583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly efficient free-space fiber coupler with 45° tilted fiber grating to access remotely placed optical fiber sensors.
    Bandyopadhyay S; Shao LY; Chao W; Yan Z; Hong F; Wang G; Jiang J; Shum P; Hong X; Wang W
    Opt Express; 2020 May; 28(11):16569-16578. PubMed ID: 32549476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].
    Wang JF; Liu HL; Zhang SQ; Yu XD; Sun ZZ; Jin SZ; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):865-71. PubMed ID: 23841387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-compensated optical fiber sensor for volatile organic compound gas detection based on cholesteric liquid crystal.
    Hu J; Chen Y; Ma Z; Zeng L; Zhou D; Peng Z; Sun W; Liu Y
    Opt Lett; 2021 Jul; 46(14):3324-3327. PubMed ID: 34264204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.