These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 36560138)
41. Development of a force-reflecting robotic platform for cardiac catheter navigation. Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046 [TBL] [Abstract][Full Text] [Related]
42. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device. Su H; Shang W; Li G; Patel N; Fischer GS Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178 [TBL] [Abstract][Full Text] [Related]
43. Augmentation of haptic feedback for teleoperated robotic surgery. Schleer P; Kaiser P; Drobinsky S; Radermacher K Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750 [TBL] [Abstract][Full Text] [Related]
44. Tool/tissue interaction feedback modalities in robot-assisted lump localization. Tavakoli M; Aziminejad A; Patel RV; Moallem M Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3854-7. PubMed ID: 17946205 [TBL] [Abstract][Full Text] [Related]
45. Impact of haptic feedback on applied intracorporeal forces using a novel surgical robotic system-a randomized cross-over study with novices in an experimental setup. Miller J; Braun M; Bilz J; Matich S; Neupert C; Kunert W; Kirschniak A Surg Endosc; 2021 Jul; 35(7):3554-3563. PubMed ID: 32700151 [TBL] [Abstract][Full Text] [Related]
46. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization. Talasaz A; Patel RV IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305 [TBL] [Abstract][Full Text] [Related]
47. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery. Abeykoon AM; Ohnishi K Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375 [TBL] [Abstract][Full Text] [Related]
48. Force feedback in a piezoelectric linear actuator for neurosurgery. De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769 [TBL] [Abstract][Full Text] [Related]
49. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery--experimental performance evaluation. Rosen J; Hannaford B; MacFarlane MP; Sinanan MN IEEE Trans Biomed Eng; 1999 Oct; 46(10):1212-21. PubMed ID: 10513126 [TBL] [Abstract][Full Text] [Related]
50. Control design and implementation of a novel master-slave surgery robot system, MicroHand A. Sang H; Wang S; Li J; He C; Zhang L; Wang X Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498 [TBL] [Abstract][Full Text] [Related]
51. Field experiment of a telesurgery system using a surgical robot with haptic feedback. Ota M; Oki E; Nakanoko T; Tanaka Y; Toyota S; Hu Q; Nakaji Y; Nakanishi R; Ando K; Kimura Y; Hisamatsu Y; Mimori K; Takahashi Y; Morohashi H; Kanno T; Tadano K; Kawashima K; Takano H; Ebihara Y; Shiota M; Inokuchi J; Eto M; Yoshizumi T; Hakamada K; Hirano S; Mori M Surg Today; 2024 Apr; 54(4):375-381. PubMed ID: 37653350 [TBL] [Abstract][Full Text] [Related]
53. Development of a remote-control system for catheterization capable of high-speed force feedback. Takagi R; Osada K; Hanafusa A; Takagi M; Mohamaddan SB; Mitsui K; Anzai H Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):763-773. PubMed ID: 36689147 [TBL] [Abstract][Full Text] [Related]
54. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation. Veras EJ; De Laurentis KJ; Dubey R Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661 [TBL] [Abstract][Full Text] [Related]
55. Augmented reality and haptic interfaces for robot-assisted surgery. Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247 [TBL] [Abstract][Full Text] [Related]
56. Cardiac X-ray image-based haptic guidance for robot-assisted coronary intervention: a feasibility study. Tahir A; Iqbal H; Usman M; Ghaffar A; Hafeez A Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):531-539. PubMed ID: 35041132 [TBL] [Abstract][Full Text] [Related]
57. Design and Motion Control of Master-Slave Control Endotracheal Intubation Robot. Qi Q; Lv J; Sun K; Sun Y; Jiang A; Ji A Int J Med Robot; 2024 Aug; 20(4):e2669. PubMed ID: 39183583 [TBL] [Abstract][Full Text] [Related]
58. Reaction force/torque sensing in a master-slave robot system without mechanical sensors. Liu T; Li C; Inoue Y; Shibata K Sensors (Basel); 2010; 10(8):7134-45. PubMed ID: 22163595 [TBL] [Abstract][Full Text] [Related]
59. Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue. Li M; Konstantinova J; Secco EL; Jiang A; Liu H; Nanayakkara T; Seneviratne LD; Dasgupta P; Althoefer K; Wurdemann HA Med Biol Eng Comput; 2015 Nov; 53(11):1177-86. PubMed ID: 26018755 [TBL] [Abstract][Full Text] [Related]
60. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback. Pacchierotti C; Abayazid M; Misra S; Prattichizzo D IEEE Trans Haptics; 2014; 7(4):551-6. PubMed ID: 25265614 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]