These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36560216)
1. Retinal OCTA Image Segmentation Based on Global Contrastive Learning. Ma Z; Feng D; Wang J; Ma H Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560216 [TBL] [Abstract][Full Text] [Related]
2. RPS-Net: An effective retinal image projection segmentation network for retinal vessels and foveal avascular zone based on OCTA data. Li W; Zhang H; Li F; Wang L Med Phys; 2022 Jun; 49(6):3830-3844. PubMed ID: 35297061 [TBL] [Abstract][Full Text] [Related]
3. ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. Ma Y; Hao H; Xie J; Fu H; Zhang J; Yang J; Wang Z; Liu J; Zheng Y; Zhao Y IEEE Trans Med Imaging; 2021 Mar; 40(3):928-939. PubMed ID: 33284751 [TBL] [Abstract][Full Text] [Related]
4. CGNet-assisted Automatic Vessel Segmentation for Optical Coherence Tomography Angiography. Yu X; Ge C; Aziz MZ; Li M; Shum PP; Liu L; Mo J J Biophotonics; 2022 Oct; 15(10):e202200067. PubMed ID: 35704010 [TBL] [Abstract][Full Text] [Related]
5. Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Eladawi N; Elmogy M; Helmy O; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A Comput Biol Med; 2017 Oct; 89():150-161. PubMed ID: 28806613 [TBL] [Abstract][Full Text] [Related]
6. Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Eladawi N; Elmogy M; Khalifa F; Ghazal M; Ghazi N; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A Med Phys; 2018 Oct; 45(10):4582-4599. PubMed ID: 30144102 [TBL] [Abstract][Full Text] [Related]
7. Partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation. Wang Z; Jia LV; Liang H Comput Biol Med; 2024 Aug; 178():108736. PubMed ID: 38878402 [TBL] [Abstract][Full Text] [Related]
8. Advanced OCTA imaging segmentation: Unsupervised, non-linear retinal vessel detection using modified self-organizing maps and joint MGRF modeling. Alksas A; Sharafeldeen A; Balaha HM; Haq MZ; Mahmoud A; Ghazal M; Alghamdi NS; Alhalabi M; Yousaf J; Sandhu H; El-Baz A Comput Methods Programs Biomed; 2024 Sep; 254():108309. PubMed ID: 39002431 [TBL] [Abstract][Full Text] [Related]
9. Multi-Plexus Nonperfusion Area Segmentation in Widefield OCT Angiography Using a Deep Convolutional Neural Network. Guo Y; Hormel TT; Gao M; You Q; Wang J; Flaxel CJ; Bailey ST; Hwang TS; Jia Y Transl Vis Sci Technol; 2024 Jul; 13(7):15. PubMed ID: 39023443 [TBL] [Abstract][Full Text] [Related]
10. AV-casNet: Fully Automatic Arteriole-Venule Segmentation and Differentiation in OCT Angiography. Xu X; Yang P; Wang H; Xiao Z; Xing G; Zhang X; Wang W; Xu F; Zhang J; Lei J IEEE Trans Med Imaging; 2023 Feb; 42(2):481-492. PubMed ID: 36227826 [TBL] [Abstract][Full Text] [Related]
11. LA-Net: layer attention network for 3D-to-2D retinal vessel segmentation in OCTA images. Yang C; Li B; Xiao Q; Bai Y; Li Y; Li Z; Li H; Li H Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38237179 [No Abstract] [Full Text] [Related]
12. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation. Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263 [TBL] [Abstract][Full Text] [Related]
13. GC-Net: Global context network for medical image segmentation. Ni J; Wu J; Tong J; Chen Z; Zhao J Comput Methods Programs Biomed; 2020 Jul; 190():105121. PubMed ID: 31623863 [TBL] [Abstract][Full Text] [Related]
14. TLTNet: A novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation. Wu C; Guo M; Ma M; Wang K Comput Biol Med; 2024 Aug; 178():108773. PubMed ID: 38925090 [TBL] [Abstract][Full Text] [Related]
15. TUnet-LBF: Retinal fundus image fine segmentation model based on transformer Unet network and LBF. Zhang H; Ni W; Luo Y; Feng Y; Song R; Wang X Comput Biol Med; 2023 Jun; 159():106937. PubMed ID: 37084640 [TBL] [Abstract][Full Text] [Related]
16. OCT Tan X; Chen X; Meng Q; Shi F; Xiang D; Chen Z; Pan L; Zhu W Comput Methods Programs Biomed; 2023 May; 233():107454. PubMed ID: 36921468 [TBL] [Abstract][Full Text] [Related]
17. PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation. Chen D; Yang W; Wang L; Tan S; Lin J; Bu W PLoS One; 2022; 17(1):e0262689. PubMed ID: 35073371 [TBL] [Abstract][Full Text] [Related]
18. Synthetic Optical Coherence Tomography Angiographs for Detailed Retinal Vessel Segmentation Without Human Annotations. Kreitner L; Paetzold JC; Rauch N; Chen C; Hagag AM; Fayed AE; Sivaprasad S; Rausch S; Weichsel J; Menze BH; Harders M; Knier B; Rueckert D; Menten MJ IEEE Trans Med Imaging; 2024 Jun; 43(6):2061-2073. PubMed ID: 38224512 [TBL] [Abstract][Full Text] [Related]
19. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
20. A bidirectional multilayer contrastive adaptation network with anatomical structure preservation for unpaired cross-modality medical image segmentation. Liu H; Zhuang Y; Song E; Xu X; Hung CC Comput Biol Med; 2022 Oct; 149():105964. PubMed ID: 36007288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]