These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36560233)

  • 1. A Reinforcement Learning-Based Strategy of Path Following for Snake Robots with an Onboard Camera.
    Liu L; Guo X; Fang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perception-Action Coupling Target Tracking Control for a Snake Robot via Reinforcement Learning.
    Bing Z; Lemke C; Morin FO; Jiang Z; Cheng L; Huang K; Knoll A
    Front Neurorobot; 2020; 14():591128. PubMed ID: 33192441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
    Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY
    Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning.
    Yang J; Ni J; Li Y; Wen J; Chen D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning.
    Zheng C; Li G; Hayashibe M
    Front Robot AI; 2022; 9():957931. PubMed ID: 36158602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning.
    Cao Y; Ni K; Kawaguchi T; Hashimoto S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collaborative robots (cobots) for disaster risk resilience: a framework for swarm of snake robots in delivering first aid in emergency situations.
    Moosavi SKR; Zafar MH; Sanfilippo F
    Front Robot AI; 2024; 11():1362294. PubMed ID: 38500802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direction Control and Adaptive Path Following of 3-D Snake-Like Robot Motion.
    Cao Z; Zhang D; Zhou M
    IEEE Trans Cybern; 2022 Oct; 52(10):10980-10987. PubMed ID: 33784629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient.
    Gong H; Wang P; Ni C; Cheng N
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep reinforcement learning-aided autonomous navigation with landmark generators.
    Wang X; Sun Y; Xie Y; Bin J; Xiao J
    Front Neurorobot; 2023; 17():1200214. PubMed ID: 37674856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition.
    Kiangala KS; Wang Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait Generation Method of Snake Robot Based on Main Characteristic Curve Fitting.
    Tang C; Sun L; Zhou G; Shu X; Tang H; Wu H
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes.
    Weel B; D'Angelo M; Haasdijk E; Eiben AE
    Artif Life; 2017; 23(1):80-104. PubMed ID: 28140628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.