These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 36560257)
1. Interactive Lane Keeping System for Autonomous Vehicles Using LSTM-RNN Considering Driving Environments. Jeong Y Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560257 [TBL] [Abstract][Full Text] [Related]
2. Time-Series-Based Personalized Lane-Changing Decision-Making Model. Ye M; Pu L; Li P; Lu X; Liu Y Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081119 [TBL] [Abstract][Full Text] [Related]
3. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns. Shangguan Q; Fu T; Wang J; Fang S; Fu L Accid Anal Prev; 2022 Jan; 164():106500. PubMed ID: 34823098 [TBL] [Abstract][Full Text] [Related]
4. Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles. Mechernene A; Judalet V; Chaibet A; Boukhnifer M Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365846 [TBL] [Abstract][Full Text] [Related]
5. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification. Wu J; Chen X; Bie Y; Zhou W Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450 [TBL] [Abstract][Full Text] [Related]
6. Lane Detection Algorithm in Curves Based on Multi-Sensor Fusion. Zhang Q; Liu J; Jiang X Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420915 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Lane-Changing Decision-Making Behavior of Autonomous Vehicles Based on Molecular Dynamics. Qu D; Zhang K; Song H; Wang T; Dai S Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298099 [TBL] [Abstract][Full Text] [Related]
8. A Novel Intelligent Approach to Lane-Change Behavior Prediction for Intelligent and Connected Vehicles. Du L; Chen W; Ji J; Pei Z; Tong B; Zheng H Comput Intell Neurosci; 2022; 2022():9516218. PubMed ID: 35082845 [TBL] [Abstract][Full Text] [Related]
9. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques. Das A; Khan MN; Ahmed MM Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143 [TBL] [Abstract][Full Text] [Related]
10. Learning-Based Lane-Change Behaviour Detection for Intelligent and Connected Vehicles. Du L; Chen W; Pei Z; Zheng H; Fu S; Chen K; Wu D Comput Intell Neurosci; 2020; 2020():8848363. PubMed ID: 33061950 [TBL] [Abstract][Full Text] [Related]
11. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment. Ma Y; Liu Q; Fu J; Liufu K; Li Q Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868 [TBL] [Abstract][Full Text] [Related]
12. A dynamic test scenario generation method for autonomous vehicles based on conditional generative adversarial imitation learning. Jia L; Yang D; Ren Y; Qian C; Feng Q; Sun B; Wang Z Accid Anal Prev; 2024 Jan; 194():107279. PubMed ID: 37897956 [TBL] [Abstract][Full Text] [Related]
13. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm. Hu H; Lu Z; Wang Q; Zheng C Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987 [TBL] [Abstract][Full Text] [Related]
14. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints. Li Z; Yuan S; Yin X; Li X; Tang S Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640 [TBL] [Abstract][Full Text] [Related]
15. A visual approach towards forward collision warning for autonomous vehicles on Malaysian public roads. Wong MK; Connie T; Goh MKO; Wong LP; Teh PS; Choo AL F1000Res; 2021; 10():928. PubMed ID: 35350706 [No Abstract] [Full Text] [Related]
16. Multi-vehicle interaction safety of connected automated vehicles in merging area: A real-time risk assessment approach. Zhu J; Ma Y; Lou Y Accid Anal Prev; 2022 Mar; 166():106546. PubMed ID: 34965492 [TBL] [Abstract][Full Text] [Related]
17. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk Perception of Drivers in Mixed Traffic. Wang C; Sun Q; Li Z; Zhang H Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316210 [TBL] [Abstract][Full Text] [Related]
18. A Lane-Changing Decision-Making Model of Bus Entering considering Bus Priority Based on GRU Neural Network. Lv W; Lv Y; Guo J; Ma J Comput Intell Neurosci; 2022; 2022():4558946. PubMed ID: 36248950 [TBL] [Abstract][Full Text] [Related]
19. Using long short term memory and convolutional neural networks for driver drowsiness detection. Quddus A; Shahidi Zandi A; Prest L; Comeau FJE Accid Anal Prev; 2021 Jun; 156():106107. PubMed ID: 33848710 [TBL] [Abstract][Full Text] [Related]
20. Trajectory-level fog detection based on in-vehicle video camera with TensorFlow deep learning utilizing SHRP2 naturalistic driving data. Khan MN; Ahmed MM Accid Anal Prev; 2020 Jul; 142():105521. PubMed ID: 32408146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]