These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36560302)

  • 1. Differences in Driver Behavior between Manual and Automatic Turning of an Inverted Pendulum Vehicle.
    Nakagawa C; Yamada S; Hirata D; Shintani A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
    Scanlon JM; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S182-9. PubMed ID: 26436230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural stability and vehicle kinematics during an evasive lane change manoeuvre: a driver training study.
    Petersen A; Barrett R
    Ergonomics; 2009 May; 52(5):560-8. PubMed ID: 19424921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving style recognition and comparisons among driving tasks based on driver behavior in the online car-hailing industry.
    Ma Y; Li W; Tang K; Zhang Z; Chen S
    Accid Anal Prev; 2021 May; 154():106096. PubMed ID: 33770720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk Perception of Drivers in Mixed Traffic.
    Wang C; Sun Q; Li Z; Zhang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical older driver errors in a national sample of serious U.S. crashes.
    Cicchino JB; McCartt AT
    Accid Anal Prev; 2015 Jul; 80():211-9. PubMed ID: 25916662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting driver reaction time and deceleration: Comparison of perception-reaction thresholds and evidence accumulation framework.
    Durrani U; Lee C; Shah D
    Accid Anal Prev; 2021 Jan; 149():105889. PubMed ID: 33248429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset.
    Wen X; Cui Z; Jian S
    Accid Anal Prev; 2022 Jul; 172():106689. PubMed ID: 35569279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data.
    Xiong H; Bao S; Sayer J; Kato K
    J Safety Res; 2015 Sep; 54():89-93. PubMed ID: 26403907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers.
    Chen F; Lu G; Tan H; Liu M; Wan H
    Accid Anal Prev; 2022 Nov; 177():106826. PubMed ID: 36081223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safer than the average human driver (who is less safe than me)? Examining a popular safety benchmark for self-driving cars.
    Nees MA
    J Safety Res; 2019 Jun; 69():61-68. PubMed ID: 31235236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Young drivers and their cars: Safe and sound or the perfect storm?
    Oviedo-Trespalacios O; Scott-Parker B
    Accid Anal Prev; 2018 Jan; 110():18-28. PubMed ID: 29080470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of effects of driver's evasive action time on rear-end collision risk using a driving simulator.
    Shah D; Lee C
    J Safety Res; 2021 Sep; 78():242-250. PubMed ID: 34399920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volvo drivers' experiences with advanced crash avoidance and related technologies.
    Eichelberger AH; McCartt AT
    Traffic Inj Prev; 2014; 15(2):187-95. PubMed ID: 24345022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Interaction Patterns with Hybrid Electric Vehicle Eco-Features for Drivers' Eco-Driving Performance.
    Arend MG; Franke T
    Hum Factors; 2017 Mar; 59(2):314-327. PubMed ID: 27702984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Safe Mobility: An Assessment of Vehicles and Technologies among a Large Cohort of Older Drivers.
    Zanier N; Molnar LJ; Eby DW; Kostyniuk LP; Zakrajsek JS; Ryan LH; St Louis RM; Stanciu SC; LeBlanc DJ; Smith J; Yung R; Nyquist LV; DiGuiseppi C; Li G; Mielenz TJ; Strogatz D;
    Occup Ther Health Care; 2019 Jan; 33(1):1-21. PubMed ID: 30724644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of looming and attention capture in drivers' braking responses.
    Terry HR; Charlton SG; Perrone JA
    Accid Anal Prev; 2008 Jul; 40(4):1375-82. PubMed ID: 18606269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Drivers' Trust of Automated Vehicle Driving Styles With a Two-Part Mixed Model of Intervention Tendency and Magnitude.
    Lee JD; Liu SY; Domeyer J; DinparastDjadid A
    Hum Factors; 2021 Mar; 63(2):197-209. PubMed ID: 31596618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.