These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36560682)

  • 81. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica.
    Cortesi P; McCulloch CE; Song H; Lin H; Milgroom MG
    Genetics; 2001 Sep; 159(1):107-18. PubMed ID: 11560890
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Contribution of protein p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation.
    Suzuki N; Nuss DL
    J Virol; 2002 Aug; 76(15):7747-59. PubMed ID: 12097588
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus.
    Craven MG; Pawlyk DM; Choi GH; Nuss DL
    J Virol; 1993 Nov; 67(11):6513-21. PubMed ID: 8411354
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The chestnut blight fungus for studies on virus/host and virus/virus interactions: from a natural to a model host.
    Eusebio-Cope A; Sun L; Tanaka T; Chiba S; Kasahara S; Suzuki N
    Virology; 2015 Mar; 477():164-175. PubMed ID: 25454384
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Hypovirus-responsive transcription factor gene pro1 of the chestnut blight fungus Cryphonectria parasitica is required for female fertility, asexual spore development, and stable maintenance of hypovirus infection.
    Sun Q; Choi GH; Nuss DL
    Eukaryot Cell; 2009 Mar; 8(3):262-70. PubMed ID: 19114501
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Multiple introductions and recombination in Cryphonectria hypovirus 1: perspective for a sustainable biological control of chestnut blight.
    Feau N; Dutech C; Brusini J; Rigling D; Robin C
    Evol Appl; 2014 May; 7(5):580-96. PubMed ID: 24944571
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes.
    Zhang DX; Nuss DL
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2062-7. PubMed ID: 26858412
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A cytoplasmically transmissible hypovirulence phenotype associated with mitochondrial DNA mutations in the chestnut blight fungus Cryphonectria parasitica.
    Monteiro-Vitorello CB; Bell JA; Fulbright DW; Bertrand H
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5935-9. PubMed ID: 11607549
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Cutinase in Cryphonectria parasitica, the chestnut blight fungus: suppression of cutinase gene expression in isogenic hypovirulent strains containing double-stranded RNAs.
    Varley DA; Podila GK; Hiremath ST
    Mol Cell Biol; 1992 Oct; 12(10):4539-44. PubMed ID: 1406643
    [TBL] [Abstract][Full Text] [Related]  

  • 90.
    Romon-Ochoa P; Samal P; Gorton C; Lewis A; Chitty R; Eacock A; Krzywinska E; Crampton M; Pérez-Sierra A; Biddle M; Jones B; Ward L
    J Fungi (Basel); 2023 Oct; 9(10):. PubMed ID: 37888292
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A tannic acid-inducible and hypoviral-regulated Laccase3 contributes to the virulence of the chestnut blight fungus Cryphonectria parasitica.
    Chung HJ; Kwon BR; Kim JM; Park SM; Park JK; Cha BJ; Yang MS; Kim DH
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1582-90. PubMed ID: 18986254
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Interaction between hypoviral-regulated fungal virulence factor laccase3 and small heat shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica.
    Chun J; Ko YH; Kim DH
    J Microbiol; 2022 Jan; 60(1):57-62. PubMed ID: 34826098
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Population Structure and Disease Development of Cryphonectria parasitica in European Chestnut Forests in the Presence of Natural Hypovirulence.
    Bissegger M; Rigling D; Heiniger U
    Phytopathology; 1997 Jan; 87(1):50-9. PubMed ID: 18945153
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Laccase Activity in Fungus
    Nuskern L; Tkalec M; Srezović B; Ježić M; Gačar M; Ćurković-Perica M
    J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829245
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Characterizing the roles of Cryphonectria parasitica RNA-dependent RNA polymerase-like genes in antiviral defense, viral recombination and transposon transcript accumulation.
    Zhang DX; Spiering MJ; Nuss DL
    PLoS One; 2014; 9(9):e108653. PubMed ID: 25268858
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Hypoviral-regulated HSP90 co-chaperone p23 (CpCop23) determines the colony morphology, virulence, and viral response of chestnut blight fungus Cryphonectria parasitica.
    Ko YH; Chun J; Yang HE; Kim DH
    Mol Plant Pathol; 2023 May; 24(5):413-424. PubMed ID: 36762926
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Transcriptome Analysis of
    Chun J; Ko YH; Kim DH
    Front Microbiol; 2020; 11():1711. PubMed ID: 32765480
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis.
    Nuss DL
    Microbiol Rev; 1992 Dec; 56(4):561-76. PubMed ID: 1480109
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A host factor involved in hypovirus symptom expression in the chestnut blight fungus, Cryphonectria parasitica.
    Faruk MI; Eusebio-Cope A; Suzuki N
    J Virol; 2008 Jan; 82(2):740-54. PubMed ID: 17977965
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Induction of a Cryphonectria parasitica cellobiohydrolase I gene is suppressed by hypovirus infection and regulated by a GTP-binding-protein-linked signaling pathway involved in fungal pathogenesis.
    Wang P; Nuss DL
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11529-33. PubMed ID: 8524797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.