These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36561040)

  • 1. Endplate volumetric bone mineral density biomechanically matched interbody cage.
    Weng Y; Di M; Wu T; Ma X; Yang Q; Lu WW
    Front Bioeng Biotechnol; 2022; 10():1075574. PubMed ID: 36561040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical Endplate Bone Density Measured by Novel Phantomless Quantitative Computed Tomography May Predict Cage Subsidence more Conveniently and Accurately.
    Di M; Weng Y; Wang G; Bian H; Qi H; Wu H; Chen C; Dou Y; Wang Z; Ma X; Xu B; Zhu S; Lu WW; Yang Q
    Orthop Surg; 2023 Dec; 15(12):3126-3135. PubMed ID: 37853959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endplate volumetric bone mineral density measured by quantitative computed tomography as a novel predictive measure of severe cage subsidence after standalone lateral lumbar fusion.
    Okano I; Jones C; Salzmann SN; Reisener MJ; Sax OC; Rentenberger C; Shue J; Carrino JA; Sama AA; Cammisa FP; Girardi FP; Hughes AP
    Eur Spine J; 2020 May; 29(5):1131-1140. PubMed ID: 32130528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endplate volumetric bone mineral density is a predictor for cage subsidence following lateral lumbar interbody fusion: a risk factor analysis.
    Jones C; Okano I; Salzmann SN; Reisener MJ; Chiapparelli E; Shue J; Sama AA; Cammisa FP; Girardi FP; Hughes AP
    Spine J; 2021 Oct; 21(10):1729-1737. PubMed ID: 33716124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates - a comprehensive mechanical and biological analysis.
    Fogel G; Martin N; Lynch K; Pelletier MH; Wills D; Wang T; Walsh WR; Williams GM; Malik J; Peng Y; Jekir M
    Spine J; 2022 Jun; 22(6):1028-1037. PubMed ID: 35017054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the geometric and material properties of lumbar endplate on lumbar interbody fusion failure: a systematic review.
    Yu Y; Robinson DL; Ackland DC; Yang Y; Lee PVS
    J Orthop Surg Res; 2022 Apr; 17(1):224. PubMed ID: 35399075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choice of Spinal Interbody Fusion Cage Material and Design Influences Subsidence and Osseointegration Performance.
    Fogel G; Martin N; Williams GM; Unger J; Yee-Yanagishita C; Pelletier M; Walsh W; Peng Y; Jekir M
    World Neurosurg; 2022 Jun; 162():e626-e634. PubMed ID: 35346883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence.
    Campbell PG; Cavanaugh DA; Nunley P; Utter PA; Kerr E; Wadhwa R; Stone M
    Neurosurg Focus; 2020 Sep; 49(3):E10. PubMed ID: 32871573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages.
    Zhang Z; Li H; Fogel GR; Xiang D; Liao Z; Liu W
    Comput Biol Med; 2018 Apr; 95():167-174. PubMed ID: 29501735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The predictive value of a novel site-specific MRI-based bone quality assessment, endplate bone quality (EBQ), for severe cage subsidence among patients undergoing standalone lateral lumbar interbody fusion.
    Jones C; Okano I; Arzani A; Dodo Y; Moser M; Reisener MJ; Chiapparelli E; Adl Amini D; Shue J; Sama AA; Cammisa FP; Girardi FP; Hughes AP
    Spine J; 2022 Nov; 22(11):1875-1883. PubMed ID: 35843534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Association Between Endplate Changes and Risk for Early Severe Cage Subsidence Among Standalone Lateral Lumbar Interbody Fusion Patients.
    Okano I; Jones C; Rentenberger C; Sax OC; Salzmann SN; Reisener MJ; Shue J; Carrino JA; Sama AA; Cammisa FP; Girardi FP; Hughes AP
    Spine (Phila Pa 1976); 2020 Dec; 45(23):E1580-E1587. PubMed ID: 32858739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Hounsfield Unit in Intraoperative Endplate Violation and Delayed Cage Subsidence with Oblique Lateral Interbody Fusion.
    Wu H; Cheung JPY; Zhang T; Shan Z; Zhang X; Liu J; Fan S; Zhao F
    Global Spine J; 2023 Sep; 13(7):1829-1839. PubMed ID: 34736351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral implantation of low-profile interbody fusion cages: subsidence, lordosis, and fusion analysis.
    Schiffman M; Brau SA; Henderson R; Gimmestad G
    Spine J; 2003; 3(5):377-87. PubMed ID: 14588950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mid-term results of 360-degree lumbar spondylodesis with the use of a tantalum implant for disc replacement].
    Matejka J; Zeman J; Belatka J
    Acta Chir Orthop Traumatol Cech; 2009 Oct; 76(5):388-93. PubMed ID: 19912702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of coronal-morphology of endplate and intervertebral space to cage subsidence and fusion following oblique lumbar interbody fusion.
    Xie T; Pu L; Zhao L; Lu Y; Yang Z; Wang X; Song Y; Zeng J
    BMC Musculoskelet Disord; 2022 Jul; 23(1):633. PubMed ID: 35788206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence.
    Pisano AJ; Fredericks DR; Steelman T; Riccio C; Helgeson MD; Wagner SC
    Neurosurg Focus; 2020 Aug; 49(2):E9. PubMed ID: 32738808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical comparison of subsidence performance among three modern porous lateral cage designs.
    Yee-Yanagishita C; Fogel G; Douglas B; Essayan G; Poojary B; Martin N; Williams GM; Peng Y; Jekir M
    Clin Biomech (Bristol, Avon); 2022 Oct; 99():105764. PubMed ID: 36130418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Management of Patients with Osteoporosis Undergoing Spinal Fusion: The Need for a Bone Mineral Density-Matched Interbody Cage.
    Falowski SM; Koga SF; Northcutt T; Garamszegi L; Leasure J; Block JE
    Orthop Res Rev; 2021; 13():281-288. PubMed ID: 34934366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity.
    Lee YH; Chung CJ; Wang CW; Peng YT; Chang CH; Chen CH; Chen YN; Li CT
    Comput Biol Med; 2016 Apr; 71():35-45. PubMed ID: 26874064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion.
    Marchi L; Abdala N; Oliveira L; Amaral R; Coutinho E; Pimenta L
    J Neurosurg Spine; 2013 Jul; 19(1):110-8. PubMed ID: 23662890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.