These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 36561041)
1. Primary exploration of host-microorganism interaction and enteritis treatment with an embedded membrane microfluidic chip of the human intestinal-vascular microsystem. Zhao W; Yao Y; Zhang T; Lu H; Zhang X; Zhao L; Chen X; Zhu J; Sui G; Zhao W Front Bioeng Biotechnol; 2022; 10():1035647. PubMed ID: 36561041 [TBL] [Abstract][Full Text] [Related]
2. Establishment and Application of Peristaltic Human Gut-Vessel Microsystem for Studying Host-Microbial Interaction. Jing B; Wang ZA; Zhang C; Deng Q; Wei J; Luo Y; Zhang X; Li J; Du Y Front Bioeng Biotechnol; 2020; 8():272. PubMed ID: 32296697 [TBL] [Abstract][Full Text] [Related]
3. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
4. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Kim HJ; Huh D; Hamilton G; Ingber DE Lab Chip; 2012 Jun; 12(12):2165-74. PubMed ID: 22434367 [TBL] [Abstract][Full Text] [Related]
5. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Li XG; Chen MX; Zhao SQ; Wang XQ Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185 [TBL] [Abstract][Full Text] [Related]
6. An Intelligent Intestine-on-a-Chip for Rapid Screening of Probiotics with Relief-Enteritis Function. Wu J; Zhang B; Liu X; Gu W; Xu F; Wang J; Liu Q; Wang R; Hu Y; Liu J; Ji X; Lv H; Li X; Peng L; Li X; Zhang Y; Wang S Adv Mater; 2024 Nov; 36(47):e2408485. PubMed ID: 39344562 [TBL] [Abstract][Full Text] [Related]
7. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. Jeon MS; Choi YY; Mo SJ; Ha JH; Lee YS; Lee HU; Park SD; Shim JJ; Lee JL; Chung BG Nano Converg; 2022 Feb; 9(1):8. PubMed ID: 35133522 [TBL] [Abstract][Full Text] [Related]
8. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. Tan HY; Trier S; Rahbek UL; Dufva M; Kutter JP; Andresen TL PLoS One; 2018; 13(5):e0197101. PubMed ID: 29746551 [TBL] [Abstract][Full Text] [Related]
9. Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners. Kulthong K; Duivenvoorde L; Mizera BZ; Rijkers D; Dam GT; Oegema G; Puzyn T; Bouwmeester H; van der Zande M RSC Adv; 2018 Sep; 8(57):32440-32453. PubMed ID: 35547722 [TBL] [Abstract][Full Text] [Related]
10. Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip. Shin W; Kim HJ Methods Cell Biol; 2018; 146():135-148. PubMed ID: 30037458 [TBL] [Abstract][Full Text] [Related]
11. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Shin W; Kim HJ Nat Protoc; 2022 Mar; 17(3):910-939. PubMed ID: 35110737 [TBL] [Abstract][Full Text] [Related]
13. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842 [TBL] [Abstract][Full Text] [Related]
14. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip. Wang L; Wu J; Chen J; Dou W; Zhao Q; Han J; Liu J; Su W; Li A; Liu P; An Z; Xu C; Sun Y Talanta; 2021 May; 226():122097. PubMed ID: 33676654 [TBL] [Abstract][Full Text] [Related]
15. Chitosan Oligosaccharides Regulate the Occurrence and Development of Enteritis in a Human Gut-On-a-Chip. Jing B; Xia K; Zhang C; Jiao S; Zhu L; Wei J; Wang ZA; Chen N; Tu P; Li J; Du Y Front Cell Dev Biol; 2022; 10():877892. PubMed ID: 35557948 [TBL] [Abstract][Full Text] [Related]
16. Shear-Enhanced Dynamic Adhesion of Lactobacillus rhamnosus GG on Intestinal Epithelia: Correlative Effect of Protein Expression and Interface Mechanics. Eshrati M; Amadei F; Staffer S; Stremmel W; Tanaka M Langmuir; 2019 Jan; 35(2):529-537. PubMed ID: 30567428 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability. Wong JF; Simmons CA Lab Chip; 2019 Mar; 19(6):1060-1070. PubMed ID: 30778462 [TBL] [Abstract][Full Text] [Related]
18. Enteric Coronavirus Infection and Treatment Modeled With an Immunocompetent Human Intestine-On-A-Chip. Bein A; Kim S; Goyal G; Cao W; Fadel C; Naziripour A; Sharma S; Swenor B; LoGrande N; Nurani A; Miao VN; Navia AW; Ziegler CGK; MontaƱes JO; Prabhala P; Kim MS; Prantil-Baun R; Rodas M; Jiang A; O'Sullivan L; Tillya G; Shalek AK; Ingber DE Front Pharmacol; 2021; 12():718484. PubMed ID: 34759819 [TBL] [Abstract][Full Text] [Related]
19. Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device. Kim HJ; Lee J; Choi JH; Bahinski A; Ingber DE J Vis Exp; 2016 Aug; (114):. PubMed ID: 27684630 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic chip for culturing intestinal epithelial cell layers: Characterization and comparison of drug transport between dynamic and static models. Kulthong K; Duivenvoorde L; Sun H; Confederat S; Wu J; Spenkelink B; de Haan L; Marin V; van der Zande M; Bouwmeester H Toxicol In Vitro; 2020 Jun; 65():104815. PubMed ID: 32119998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]