BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 36561146)

  • 1. Silicon quantum dots inlaid micron graphite anode for fast chargeable and high energy density Li-ion batteries.
    Li H; Buckingham MA
    Front Chem; 2022; 10():1091268. PubMed ID: 36561146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of dual carbon encapsulated porous micron silicon composite with compact surface for enhanced reaction kinetics of lithium-ion battery anodes.
    Shi H; Wang C; Wang J; Wang D; Xiong Z; Wang Z; Wang Z; Bai Z; Gao Y; Yan X
    J Colloid Interface Sci; 2024 Aug; 668():459-470. PubMed ID: 38691956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries.
    Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode.
    Yu P; Li Z; Han M; Yu J
    Small; 2024 Apr; 20(17):e2307494. PubMed ID: 38041468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode.
    Tian YF; Tan SJ; Yang C; Zhao YM; Xu DX; Lu ZY; Li G; Li JY; Zhang XS; Zhang CH; Tang J; Zhao Y; Wang F; Wen R; Xu Q; Guo YG
    Nat Commun; 2023 Nov; 14(1):7247. PubMed ID: 37945604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating the Effects of Transition-Metal-Ion Dissolution on Silicon Anodes in Lithium-Ion Batteries.
    Torres RM; Manthiram A
    Small; 2024 Jul; 20(27):e2309350. PubMed ID: 38284325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.
    Huang S; Cheong LZ; Wang D; Shen C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano/Microstructured Silicon-Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries.
    Kwon HJ; Hwang JY; Shin HJ; Jeong MG; Chung KY; Sun YK; Jung HG
    Nano Lett; 2020 Jan; 20(1):625-635. PubMed ID: 31825628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid-Electrolyte Interphase Protective Layer.
    Abdollahifar M; Vinograd A; Lu CY; Chang SJ; Müller J; Frankenstein L; Placke T; Kwade A; Winter M; Chao CY; Wu NL
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38824-38834. PubMed ID: 35982536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.
    Dash R; Pannala S
    Sci Rep; 2016 Jun; 6():27449. PubMed ID: 27311811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micron-Sized SiO
    Jo M; Sim S; Kim J; Oh P; Son Y
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of the first charge of a Li-ion-Si-anode nanobattery.
    Galvez-Aranda DE; Ponce V; Seminario JM
    J Mol Model; 2017 Apr; 23(4):120. PubMed ID: 28303437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries.
    Zhang W; Gui S; Li W; Tu S; Li G; Zhang Y; Sun Y; Xie J; Zhou H; Yang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51954-51964. PubMed ID: 36350880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells.
    Nölle R; Achazi AJ; Kaghazchi P; Winter M; Placke T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28187-28198. PubMed ID: 30044617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries.
    Hu J; Wang Q; Fu L; Rajagopalan R; Cui Y; Chen H; Yuan H; Tang Y; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48467-48475. PubMed ID: 33052650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.
    Ko M; Oh P; Chae S; Cho W; Cho J
    Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Si/graphite anode composition for new generation Li-ion batteries: a case study.
    Kalafat İ; Yuca N
    Turk J Chem; 2022; 46(6):2112-2122. PubMed ID: 37621354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.